Skip to main content

Advertisement

Log in

Computer-assisted study of the axial orientation and distances between renovisceral arteries ostia

  • Anatomic Bases of Medical, Radiological and Surgical Techniques
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Purpose

Endovascular navigation in aortic, renal and visceral procedures are based on precise knowledge of arterial anatomy. Our aim was to define the anatomical localization of the ostia of renovisceral arteries and their distribution to establish anatomical landmarks for endovascular catheterization.

Methods

Computer-assisted measurements performed on 55 CT scans and patients features (age, sex, aortic diameter) were analyzed. p values <0.05 were considered statistically significant.

Results

The mean axial angulation of CeT and the SMA origin was 21.8° ± 10.1° and 9.9° ± 10.5°, respectively. The ostia were located on the left anterior edge of the aorta in 96 % of cases for the CeT and 73 % for the SMA. CeT and SMA angles followed Gaussian distribution. Left renal artery (LRA) rose at 96° ± 15° and in 67 % of cases on the left posterior edge. The right renal artery (RRA) rose at −62° ± 16.5° and in 98 % of cases on the right anterior edge of the aorta. RRA angle measurements and cranio-caudal RRA-LRA distance measurements did not follow Gaussian distribution. The mean distances between the CeT and the SMA, LRA, and RRA were 16.7 ± 5.0, 30.7 ± 7.9 and 30.5 ± 7.7 mm, respectively. CeT-SMA distance showed correlation with age and aortic diameter (p = 0.03). CeT-LRA distance showed correlation with age (p = 0.04). The mean distance between the renal ostia was 3.75 ± 0.21 mm. The RRA ostium was higher than the LRA ostium in 52 % of cases. RRA and LRA origins were located at the same level in 7 % of cases.

Conclusion

Our results illustrate aortic elongation with ageing and high anatomical variability of renal arteries. Our findings are complementary to anatomical features previously published and might contribute to enhance endovascular procedures safety and efficacy for vascular surgeons and interventional radiologists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adachi B (1928) Anatomie der Japaner I. Das Arteriensystem der Japaner. Band II. Verlag der Kaiserlich-Japanischen Universität zu Kyoto. Maruzen Publishing Co., Kyoto

  2. Anson BJ, McVay CB (1936) The topographical positions and the mutual relations of the visceral branches of the abdominal aorta. A study of 100 consecutive cadavers. Anat Rec 67(1):7–15

    Article  Google Scholar 

  3. Beregi JP, Mauroy B, Willoteaux S, Mounier-Vehier C, Rémy-Jardin M, Francke J (1998) Anatomic variation in the origin of the main renal arteries: spiral CTA evaluation. Eur Radiol 9(7):1330–1334

    Article  Google Scholar 

  4. Bergman RA, Thomson SA, Afifi AK, Saadeh FA (1988) Compendium of human anatomic variation. Urban & Schwarzenberg, Baltimore, pp 81–82

    Google Scholar 

  5. Cauldwell EW, Anson BJ (1943) The visceral branches of the abdominal aorta: topographical relationships. Am J Anat 73(1):27–57

    Article  Google Scholar 

  6. Cooper CJ, Murphy TP, Cutlip DE, Jamerson K, Henrich W, Reid DM et al (2014) Stenting and medical therapy for atherosclerotic renal-artery stenosis. N Engl J Med 370(1):13–22. doi:10.1056/NEJMoa1310753

    Article  CAS  PubMed  Google Scholar 

  7. Coscas R, Kobeiter H, Desgranges P, Becquemin J-P (2011) Technical aspects, current indications, and results of chimney grafts for juxtarenal aortic aneurysms. J Vasc Surg 53(6):1520–1527. doi:10.1016/j.jvs.2011.01.067

    Article  PubMed  Google Scholar 

  8. Garcier J-M, De Fraissinette B, Filaire M, Gayard P, Therre T, Ravel A et al (2001) Origin and initial course of the renal arteries a radiological study. Surg Radiol Anat 23(1):51–55

    Article  CAS  PubMed  Google Scholar 

  9. George R (1935) Topography of the unpaired visceral branches of the abdominal aorta. J Anat 69(Pt 2):196–205

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Heidsieck E (1928) Zur Skeletopie der grossen Aste der Bauchaorta. Anat Anz 66:6–24

    Google Scholar 

  11. Kamenskiy A, Miserlis D, Adamson P, Adamson M, Knowles T, Neme J et al (2015) Patient demographics and cardiovascular risk factors differentially influence geometric remodeling of the aorta compared with the peripheral arteries. Surgery 158(6):1617–1627. doi:10.1016/j.surg.2015.05.013

    Article  PubMed  PubMed Central  Google Scholar 

  12. Keen EN (1981) Origin of the renal arteries from the aorta. Acta Anat 110:285–286

    Article  CAS  PubMed  Google Scholar 

  13. Kirkwood ML, Guild JB, Arbique GM, Anderson JA, Valentine RJ, Timaran C (2015) Surgeon radiation dose during complex endovascular procedures. J Vasc Surg 62(2):457–463. doi:10.1016/j.jvs.2015.02.050

    Article  PubMed  Google Scholar 

  14. Mazzaccaro D, Malacrida G, Nano G (2015) Variability of origin of splanchnic and renal vessels from the thoracoabdominal aorta. Eur J Vasc Endovasc Surg 49(1):33–38

    Article  CAS  PubMed  Google Scholar 

  15. Mehran R, Nikolsky E (2006) Contrast-induced nephropathy: definition, epidemiology, and patients at risk. Kidney Int Suppl (100):S11–S5

  16. Ozan H, Alemdaroglu A, Sinav A, Gümüsalan Y (1997) Location of the ostia of the renal arteries in the aorta. Surg Radiol Anat 19:245–247

    Article  CAS  PubMed  Google Scholar 

  17. Ozkan U, Oguzkurt L, Tercan F, Kizilkilic O, Koç Z, Koca N (2006) Renal artery origins and variations: angiographic evaluation of 855 consecutive patients. Diagn Interv Radiol 12(4):183–186

    PubMed  Google Scholar 

  18. Ozkurt H, Cenker MM, Bas N, Erturk SM, Basak M (2007) Measurement of the distance and angle between the aorta and superior mesenteric artery: normal values in different BMI categories. Surg Radiol Anat 29(7):595–599

    Article  PubMed  Google Scholar 

  19. Panagouli E, Lolis E, Venieratos DA (2011) Morphometric study concerning the branching points of the main arteries in humans: relationships and correlations. Ann Anat 193(2):86–99. doi:10.1016/j.aanat.2010.10.009

    Article  PubMed  Google Scholar 

  20. Pennington N, Soames RW (2005) The anterior visceral branches of the abdominal aorta and their relationship to the renal arteries. Surg Radiol Anat 27(5):395–403

    Article  PubMed  Google Scholar 

  21. Rio Branco P (1912) Essai sur l’anatomie et la médecine opératoire du tronc cœliaque et de l’artère hépatique. G. Steinheil (ed), pp. 65–66

  22. Saltzberg SS, Maldonado TS, Lamparello PJ, Cayne NS, Nalbandian MM, Rosen RJ, Jacobowitz GR, Adelman MA, Gagne PJ, Riles TS, Rockman CB (2005) Is endovascular therapy the preferred treatment for all visceral artery aneurysms? Ann Vasc Surg 19(4):507–515

    Article  PubMed  Google Scholar 

  23. Saratzis AN, Goodyear S, Sur H, Saedon M, Imray C, Mahmood A (2013) Acute kidney injury after endovascular repair of abdominal aortic aneurysm. J Endovasc Ther 20(3):315–330. doi:10.1583/12-4104MR2.1

    Article  PubMed  Google Scholar 

  24. Sobocinski Jonathan, d’Utra Guillerme, O’Brien Noel, Midulla Marco, Maurel Blandine, Guillou Matthieu, Azzaoui Richard, Roeder Blayne, Resch Timothy A, Haulon Stéphan (2012) Off-the-shelf fenestrated endografts: a realistic option for more than 70 % of patients with juxtarenal aneurysms. Endovasc Ther 19:165–172. doi:10.1583/11-3772.1

    Article  Google Scholar 

  25. Tacher V, Lin M, Desgranges P, Deux JF, Grünhagen T, Becquemin JP, Luciani A, Rahmouni A, Kobeiter H (2013) Image guidance for endovascular repair of complex aortic aneurysms: comparison of two-dimensional and three-dimensional angiography and image fusion. J Vasc Interv Radiol 24(11):1698–1706. doi:10.1016/j.jvir.2013.07.016

    Article  PubMed  PubMed Central  Google Scholar 

  26. Taniguchi J (1931) Beitrag zur Topographie der grossen Aste der Bauchaorta. Folia Anat Jpn 9:201–214

    Google Scholar 

  27. Tokue H, Tokue A, Tsushima Y (2012) Multidetector-row computed tomography for evaluating the branching angle of the celiac artery: a descriptive study. BMC Med Imaging 21(12):36. doi:10.1186/1471-2342-12-36

    Article  Google Scholar 

  28. Wozniak WT (2000) Origin of the renal arteries from sides of aorta. Folia Morphol (Warsz) 58:259–261

    CAS  Google Scholar 

  29. Yahel J, Arensburg B (1998) The topographic relationships of the unpaired visceral branches of the aorta. Clin Anat 11(5):304–309

    Article  CAS  PubMed  Google Scholar 

  30. Yan H (1994) Relationship of the celiac and superior mesenteric arteries to the vertebral bodies and its clinical relevance. Radiat Med 12:105–109

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Lawton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lawton, J., Touma, J., Sénémaud, J. et al. Computer-assisted study of the axial orientation and distances between renovisceral arteries ostia. Surg Radiol Anat 39, 149–160 (2017). https://doi.org/10.1007/s00276-016-1718-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-016-1718-6

Keywords

Navigation