Skip to main content

Advertisement

Log in

Plant pathogens in recycled irrigation water in commercial plant nurseries and greenhouses: their detection and management

  • Review
  • Published:
Irrigation Science Aims and scope Submit manuscript

Abstract

With water conservation and reuse a priority for communities worldwide, recycling irrigation water in commercial plant nurseries and greenhouses is a logical measure. Plant pathogenic microorganisms may be present in the initial water source, or may accrue and disperse from various points throughout the irrigation system, constituting a risk of disease to irrigated plants. The continual recycling of this water is exacerbating this plant disease risk. Accurate and timely detection of plant pathogenic propagules in recycled irrigation water is required to assess disease risk. Both biological and economic thresholds must be established for important plant-pathosystems. Plant pathogens in recycled irrigation water can be managed by a variety of treatment methods that can be arranged in four broad categories: cultural, physical, chemical, and biological. An integrated approach using one or more techniques from each category is likely to be the most effective strategy in combating plant pathogens in recycled irrigation water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Acher A, Heuer B, Rubinskaya E, Fischer E (1997) Use of ultraviolet-disinfected nutrient solutions in greenhouses. J Hortic Sci 72(1):117–123

    Google Scholar 

  • Adams RP, Robinson I (1979) Treatment of irrigation water by ultra-violet radiation. In: Lovelock DW (ed) Plant pathogens. Academic Press, London, pp 91–97

    Google Scholar 

  • Adler U, Wilson R (1999) Disinfecting waste water with germicidal UV light. Pract Hydroponics Greenh (March/April):26–27

  • Ahonsi MO, Banko TJ, Hong CX (2007) A simple in vitro ‘wet-plate’ method for mass production of Phytophthora nicotianae zoospores and factors influencing zoospore production. J Microbiol Meth 70(3):557–560. doi:10.1016/j.mimet.2007.06.012

    CAS  Google Scholar 

  • Ahonsi MO, Banko TJ, Doane SR, Demuren AO, Copes WE, Hong CX (2008) Phytophthora nicotianae zoospores evade pressure and agitation stress but are completely destroyed by CO2 injection. Phytopathology 98(6, Supplement):S10

    Google Scholar 

  • Ahonsi MO, Banko TJ, Doane SR, Demuren AO, Copes WE, Hong CX (2010) Effects of hydrostatic pressure, agitation and CO2 stress on Phytophthora nicotianae zoospore survival. Pest Manag Sci 66:696–704

    PubMed  CAS  Google Scholar 

  • Ali-Shtayeh MS, MacDonald JD, Kabashima J (1991) A method for using commercial ELISA tests to detect zoospores of Phytophthora and Pythium species in irrigation water. Plant Dis 75(3):305–311

    CAS  Google Scholar 

  • Alsanius BW, Lundqvist S, Persson E, Gustafsson K-A, Olsson M, Khalil S (2004) Yield and fruit quality of tomato grown in a closed hydroponic greenhouse system as affected by Pythium ultimum attack and biological control agents. Acta Hortic 644:575–582

    Google Scholar 

  • Amsing JJ (1995) Gnomonia radicicola and a Phytophthora species as causal agents of root rot on roses in artificial substrates. Acta Hortic 382:203–211

    Google Scholar 

  • Amsing JJ, Runia WT (1995) Disinfestation of nematode-infested recirculation water by ultra-violet radiation. Mededelingen Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen Universiteit Gent 60(3b):1087–1091

    Google Scholar 

  • Anonymous (1993) Ozone water treatment. Am Nurserym 178(6):97, 99

    Google Scholar 

  • Anonymous (1997) Water disinfestation—chloro-bromination and ozone systems get the thumbs up! Nurs Pap Issue 8:1–2

    Google Scholar 

  • Anonymous (1998) Disinfestation of recycled irrigation water: the environmental aspect. Aust Hortic 96(4):45

    Google Scholar 

  • Anonymous (2000) Greenhouse supplier distributes biofilter. Aust Hortic 98(1):41–42

    Google Scholar 

  • Anonymous (2007) Efficacy of chlorine, chlorine dioxide, bromine, and chlorine/bromine against six nursery pathogens. Water Disinfestation Report 0807, DPI Redlands, 10 pp

  • Armitage P (1993) Chemical control of Phytophthora cinnamomi in irrigation water. Aust Hortic 91(10):30–36

    Google Scholar 

  • Arnold MA, Lesikar BJ, McDonald GV, Bryan DL, Gross A (2003) Irrigating landscape bedding plants and cut flowers with recycled nursery runoff and constructed wetland treated water. J Environ Hortic 21(2):89–98

    Google Scholar 

  • Arnold MA, Goyne MW, Wilkerson DC, Lesikar BJ, Meche MS, McDonald GV (2004a) Use of recycled nursery runoff from mixed stand wetlands influences container production of four tree species. HortScience 39(3):665

    Google Scholar 

  • Arnold MA, Lesikar BJ, McDonald GV, Wilkerson DC (2004b) A comparison of subcanopy versus overhead application of constructed wetland treated nursery runoff on short and long rotation nursery crops. J Environ Hortic 22(4):217–224

    Google Scholar 

  • Atmatjidou VP (1991) Dissemination and transmission of Xanthomonas campestris pv. begoniae in an ebb and flow irrigation system. Plant Dis 75(12):1261–1265

    Google Scholar 

  • Austin B (1989) Brominization vs. chlorination. Comb Proc Int Plant Propag Soc 39:310–311

    Google Scholar 

  • Banihashemi Z, MacDonald J, Lagunas-Solar M (1992) Inactivation of Phytophthora in recycled nursery irrigation water with wide- (continuous) and narrow-band (pulsed laser) ultraviolet radiation. Phytopathology 82(10):1122

    Google Scholar 

  • Banko TJ, Hong CX, Richardson PA (2004) Reduction in Phytophthora disease with increased inoculum application pressure. Phytopathology 94(6, Supplement):S6

    Google Scholar 

  • Barth G (1998) Investigation of sand filtration for nursery recycling systems. HRDC Final Report NY413, 32 pp

  • Barth G (1999) Slow flow sand filtration (SSF) for water treatment in nurseries and greenhouses. Nurs Pap Issue 3:1–7

    Google Scholar 

  • Beagle G, Justin J (1993) Using a constructed wetland to treat waste water and propagate wetland species. Tree Planters Notes Summer:93–97

  • Berghage RD, MacNeal EP, Wheeler EF, Zachritz WH (1999) “Green” water treatment for the green industries: opportunities for biofiltration of greenhouse and nursery irrigation water and runoff with constructed wetlands. HortScience 34(1):50–54

    Google Scholar 

  • Berkelmann B, Wohanka W, Wolf GA (1994) Characterization of the bacterial flora in circulating nutrient solutions of a hydroponic system with rockwool. Acta Hortic 361:372–381

    Google Scholar 

  • Berkelmann B, Wohanka W, Krczal G (1995) Transmission of Pelargonium flower break virus (PFBV) by recirculating nutrient solutions with and without slow sand filtration. Acta Hortic 382:256–262

    Google Scholar 

  • Bewley WF, Buddin W (1921) On the fungus flora of glasshouse water supplies in relation to plant disease. Ann Appl Biol 8(1):10–19

    Google Scholar 

  • Blažka P, Procházková L (1983) Minerlization of organic matter in water by UV radiation. Water Res 17(4):355–364

    Google Scholar 

  • Boehm MJ, Hoitink HAJ (1992) Sustenance of microbial activity in potting mixes and its impact on severity of Pythium root rot of poinsettia. Phytopathology 82(3):259–264

    Google Scholar 

  • Brand T, Alsanius BW (2004a) Cell-wall degrading enzymes in slow filters of closed hydroponic systems. J Hortic Sci Biotechnol 79(2):228–233

    CAS  Google Scholar 

  • Brand T, Alsanius BW (2004b) Enzyme activity in nutrient solution of closed hydroponic systems with integrated slow filters. Acta Hortic 644:525–531

    CAS  Google Scholar 

  • Brand T, Wohanka W (2001) Importance and characterization of the biological component in slow filters. Acta Hortic 554:313–321

    Google Scholar 

  • Brockwell J, Gault RR (1976) Effects of irrigation water temperature on growth of some legume species in glasshouses. Aust J Exp Agric Anim Husb 16(81):500–505

    Google Scholar 

  • Buck JW, van Iersel MW, Oetting RD, Hung Y-C (2002) In vitro fungicidal activity of acidic electrolyzed oxidizing water. Plant Dis 86(3):278–281

    CAS  Google Scholar 

  • Buck JW, van Iersel MW, Oetting RD, Hung Y-C (2003) Evaluation of acidic electrolyzed water for phytotoxic symptoms on foliage and flowers of bedding plants. Crop Prot 22(1):73–77

    Google Scholar 

  • Bull RJ, Gerba C, Trussell RR (1990) Evaluation of the health risks associated with disinfection. Crit Rev Environ Control 20(2):77–113

    CAS  Google Scholar 

  • Bush EA, Hong C, Stromberg EL (2002) Characterization of Phytophthora species from an irrigation water recycling system at a container nursery in southwestern Virginia. Phytopathology 92(6, Supplement):S11

    Google Scholar 

  • Bush EA, Hong CX, Stromberg EL (2003) Fluctuations of Phytophthora and Pythium spp. in components of a recycling irrigation system. Plant Dis 87(12):1500–1506. doi:10.1094/pdis.2003.87.12.1500

    Google Scholar 

  • Büttner C (1995) Studies on transmission of plant viruses by recirculating nutrient solution such as ebb-flow. Acta Hortic 396:265–272

    Google Scholar 

  • Calvo-Bado LA, Morgan JAW, Sergeant M, Pettitt TR, Whipps JM (2003a) Molecular characterization of Legionella populations present within slow sand filters used for fungal plant pathogen suppression in horticultural crops. Appl Environ Microbiol 69(1):533–541

    PubMed  CAS  Google Scholar 

  • Calvo-Bado LA, Pettitt TR, Parsons N, Petch GM, Morgan JAW, Whipps JM (2003b) Spatial and temporal analysis of the microbial community in slow sand filters used for treating horticultural irrigation water. Appl Environ Microbiol 69(4):2116–2125

    PubMed  CAS  Google Scholar 

  • Cappaert MR, Powelson ML, Franc GD, Harrison MD (1988) Irrigation water as a source of inoculum of soft rot erwinias for aerial stem rot of potatoes. Phytopathology 78(12):1668–1672

    Google Scholar 

  • Carlson KM, Hong CX, Richardson PA (2004) Characterization of fungicide resistance and pathogenic fitness in a population of Pythium dissotocum isolated from nursery irrigation water. Phytopathology 94(6, Supplement):S14

    Google Scholar 

  • Carruthers S (1997) An introduction to ozone generation. Pract Hydroponics Greenh (Sept/Oct):24–31

  • Cayanan DF, Zheng Y, Zhang P, Graham T, Dixon M, Chong C, Llewellyn J (2008) Sensitivity of five container-grown nursery species to chlorine in overhead irrigation water. HortScience 43(6):1882–1887

    Google Scholar 

  • Cayanan DF, Dixon M, Zheng YB, Llewellyn J (2009a) Response of container-grown nursery plants to chlorine used to disinfest irrigation water. HortScience 44(1):164–167

    Google Scholar 

  • Cayanan DF, Zhang P, Liu W, Dixon M, Zheng Y (2009b) Efficacy of chlorine in controlling five common plant pathogens. HortScience 44(1):157–163

    Google Scholar 

  • Chin R (2005, April) New water treatment systems for the nursery industry. Paper presented at the Nursery and garden industry conference proceedings, Fremantle

  • Clark GA, Smajstrla AG (1992) Treating irrigation systems with chlorine. Foliage Digest 15(6):3–5

    Google Scholar 

  • Cohn DR, Hong CX (2003) Efficacy of ultraviolet irradiance for disinfesting recycled irrigation water. Phytopathology 93(6, Supplement):S123–S124

    Google Scholar 

  • Cunningham N, Taverner P (2002) Types of sanitisers and the factors affecting their activity. Packer Newslett 68:3–4

    Google Scholar 

  • Date S, Hataya T, Namiki T (1999) Effects of nutrient and environmental pre-treatments on the occurrence of root injury of lettuce caused by chloramine. Acta Hortic 481:553–559

    CAS  Google Scholar 

  • Daughtrey ML, Schippers PA (1980) Root death and associated problems. Acta Hortic 98:283–291

    Google Scholar 

  • Daughtry B (1984) Chlorination of irrigation water. Comb Proc Int Plant Propag Soc 33:596–599

    Google Scholar 

  • De Hayr R, Bodman K, Forsberg L (1994) Bromine and chlorine disinfestation of nursery water supplies. Comb Proc Int Plant Propag Soc 44:60–66

    Google Scholar 

  • Déniel F, Rey P, Chérif M, Guillou A, Tirilly Y (2004) Indigenous bacteria with antagonistic and plant-growth-promoting activities improve slow-filtration efficiency in soilless cultivation. Can J Microbiol 50(7):499–508. doi:10.1139/w04-034

    PubMed  Google Scholar 

  • Domingue EL, Tyndall RL, Mayberry WR, Pancorbo OC (1988) Effects of three oxidizing biocides on Legionella pneumophila serogroup-1. Appl Environ Microbiol 54(3):741–747

    PubMed  CAS  Google Scholar 

  • Downey D, Giles DK, Delwiche MJ, MacDonald JD (1998) Development and validation of a general model for predicting biological efficacy of UV reactors against plant pathogens in irrigation water. Trans Am Soc Agric Eng 41(3):849–857

    Google Scholar 

  • Duncan A (1988) The ecology of slow sand filters. In: Graham NJD (ed) Slow sand filtration: recent developments in water treatment technology. Ellis Horwood Ltd, Chichester, pp 163–180

    Google Scholar 

  • Ehret DL, Bogdanoff C, Utkhede R, Lévesque A, Menzies GJ, Ng K, Portree J (1999) Disease control with slow filtration for greenhouse crops grown in recirculation. Final Report to the BC Greenhouse Vegetable Research Council, Project 96-15, 37 pp

  • Ehret DL, Alsanius B, Wohanka W, Menzies GJ, Utkhede R (2001) Disinfestation of recirculating nutrient solutions in greenhouse horticulture. Agronomie 21(4):323–339

    Google Scholar 

  • Ellis KV (1985) Slow sand filtration. Crit Rev Environ Control 15(4):315–354

    CAS  Google Scholar 

  • Ewart JM, Chrimes JR (1980) Effects of chlorine and UV light in disease control in nutrient film technique. Acta Hortic 98:317–323

    Google Scholar 

  • Faulkner LR, Bolander WJ (1970) Agriculturally-polluted irrigation water as a source of plant-parasitic nematode infestation. J Nematol 2(4):368–374

    PubMed  CAS  Google Scholar 

  • Fernandez RT, Whitwell T, Riley MB, Bernard CR (1999) Evaluating semiaquatic herbaceous perennials for use in herbicide phytoremediation. J Am Soc Hortic Sci 124(5):539–544

    CAS  Google Scholar 

  • Ferraro B (1998) The disinfection connection. Am Nurserym 187(5):32–33

    Google Scholar 

  • Fitzell RD, Peak CM (1990) Ultraviolet disinfection is effective. Good Fruit Veg 2(July):42

    Google Scholar 

  • Flaherty A (1995) The many faces of Jet. Grow August 17:12–13

    Google Scholar 

  • Fox LJ, Grose JN, Appleton BL, Donohue SJ (2005) Evaluation of treated effluent as an irrigation source for landscape plants. J Environ Hortic 23(4):174–178

    Google Scholar 

  • Frink CR, Bugbee GJ (1987) Response of potted plants and vegetable seedlings to chlorinated water. HortScience 22(4):581–583

    CAS  Google Scholar 

  • Furtner B, Bergstrand KJ, Brand T, Jung V, Alsanius BW (2007) Abiotic and biotic factors in slow filters integrated to closed hydroponic systems. Eur J Hortic Sci 72(3):104–112

    CAS  Google Scholar 

  • Ghimire SR, Richardson PA, Moorman GW, Lea-Cox JD, Ross DS, Hong C (2006) Detection of Phytophthora species in a run-off water retention basin at a commercial nursery in plant hardiness zones 7b of Virginia in winter. Phytopathology 96(6, Supplement):S40

    Google Scholar 

  • Ghimire SR, Richardson PA, Moorman GW, Lea-Cox JD, Ross DS, Hong CX (2009) An in situ baiting bioassay for detecting Phytophthora species in irrigation runoff containment basins. Plant Pathol 58(3):577–583. doi:10.1111/j.1365-3059.2008.02016.x

    Google Scholar 

  • Gill DL (1970) Pathogenic Pythium from irrigation ponds. Plant Dis Rep 54(12):1077–1079

    Google Scholar 

  • Goldberg NP, Stanghellini ME, Rasmussen SL (1992) Filtration as a method for controlling Pythium root rot of hydroponically grown cucumbers. Plant Dis 76(8):777–779

    Google Scholar 

  • Graham T, Zhang P, Zheng Y, Dixon MA (2009) Phytotoxicity of aqueous ozone on five container-grown nursery species. HortScience 44(3):774–780

    Google Scholar 

  • Grech NM, Rijkenberg FHJ (1992) Injection of electrolytically generated chlorine into citrus microirrigation systems for the control of certain waterborne root pathogens. Plant Dis 76(5):457–461

    CAS  Google Scholar 

  • Grech NM, Frean RT, Williams G (1989) Ultraviolet irradiation and filtration of irrigation water in citrus and subtropical fruit nurseries. Phytophylactica 21(3):247–249

    Google Scholar 

  • Griffini O, Bao ML, Burrini D, Santianni D, Barbieri C, Pantani F (1999) Removal of pesticides during the drinking water treatment process at Florence water supply, Italy. J Water Serv Res Technol Aqua 48(5):177–185

    CAS  Google Scholar 

  • Gudmestad NC, Secor GA (1983) The bionomics of Erwinia carotovora in North Dakota. Am Potato J 60(10):759–771

    Google Scholar 

  • Hammer DA (1993) Designing constructed wetlands systems to treat agricultural nonpoint source pollution. In: Olson RK (ed) Created and Natural Wetlands for Controlling Nonpoint Source Pollution. C. K. Smoley (CRC Press, Inc.), Boca Raton, pp 71–111

    Google Scholar 

  • Hanks GR, Linfield CA (1999) Evaluation of a peroxyacetic acid disinfectant in hot-water treatment for the control of basal rot (Fusarium oxysporum f. sp. narcissi) and stem nematode (Ditylenchus dipsaci) in narcissus. J Phytopathol 147(5):271–279

    CAS  Google Scholar 

  • Harrison MD, Franc GD, Maddox DA, Michaud JE, McCarter-Zorner NJ (1987) Presence of Erwinia carotovora in surface water in North America. J Appl Bacteriol 62(6):565–570

    Google Scholar 

  • Headley T, Dirou J, Huett D, Stovold G, Davison L (2005) Reed beds for the remediation and recycling of nursery runoff water. Australas J Environ Manag 12(1):27–36

    Google Scholar 

  • Heald CM, Johnson AW (1969) Survival and infectivity of nematodes after passing through an overhead sprinkler irrigation system. J Nematol 1(4):290

    Google Scholar 

  • Hoigné J (1994) Characterization of water quality criteria for ozonation processes. Part 1: minimal set of analytical data. Ozone Sci Eng 16(2):113–120

    Google Scholar 

  • Hoitink HAJ, Fynn RP, McMahon RW, Atmatjidou V (1992) Transmission of plant pathogens in an ebb and flood system. Foliage Digest 15(4):4–6

    Google Scholar 

  • Holt TC, Maynard BK, Johnson WA (1999) Nutrient removal by five ornamental wetland plant species grown in treatment-production wetland biofilters. HortScience 34(3):521

    Google Scholar 

  • Hong CX (2001) Effect of chlorine concentration and contact time on zoospore survival of Phytophthora nicotianae. SNA Res Conf 46:315–316

    Google Scholar 

  • Hong CX, Epelman G (2001) Effect of pathogen concentration and exposure frequency on Phytophthora blight of annual vinca under drip irrigation systems. Phytopathology 91(6, Supplement):S40

    Google Scholar 

  • Hong CX, Moorman GW (2005) Plant pathogens in irrigation water: challenges and opportunities. Crit Rev Plant Sci 24(3):189–208. doi:10.1080/07352680591005838

    Google Scholar 

  • Hong C, Richardson PA (2004) Efficacy of chlorine on Pythium species in irrigation water. SNA Res Conf 49:265–267

    Google Scholar 

  • Hong CX, Bush EA, Richardson PA, Stromberg EL (2001) The major deterrent to recycling irrigation water in nursery and greenhouse operations despite the lack of alternatives for limiting nonpoint source pollution. Proc Va Water Res Symp 1:72–77

    Google Scholar 

  • Hong C, Cohn D, Kong P, Richardson PA (2002a) Economic significance to nursery production of Phytophthora species present in irrigation water. SNA Res Conf 47:237–240

    Google Scholar 

  • Hong C, Richardson PA, Kong P (2002b) Comparison of membrane filters as a tool for isolating pythiaceous species from irrigation water. Phytopathology 92(6):610–616

    PubMed  Google Scholar 

  • Hong CX, Kong P, Richardson PA (2002c) Epidemiological significance of Phytophthora species present in recycled irrigation water to ornamental production. Phytopathology 92(6, Supplement):S143–S144

    Google Scholar 

  • Hong C, Richardson PA, Kong P (2003a) Factors affecting baiting assays for Phytophthora species in irrigation water. SNA Res Conf 48:218–220

    Google Scholar 

  • Hong CX, Richardson PA, Kong P (2003b) Decline in populations of Phytophthora spp. with increasing distance from a runoff water entry point in a retention pond. Phytopathology 93(6, Supplement):S36

    Google Scholar 

  • Hong CX, Richardson PA, Kong P, Bush EA (2003c) Efficacy of chlorine on multiple species of Phytophthora in recycled nursery irrigation water. Plant Dis 87(10):1183–1189. doi:10.1094/pdis.2003.87.10.1183

    Google Scholar 

  • Huett DO (2002) Constructed wetlands to reduce nutrient and pathogen loads in recycled nursery water. Horticulture Australia Final Report NY98008, 113 pp

  • Huisman L, Wood WE (1974) Slow sand filtration. World Health Organization, Geneva

    Google Scholar 

  • Igura N, Fujii M, Shimoda M, Hayakawa I (2004) Research note: inactivation efficiency of ozonated water for Fusarium oxysporum conidia under hydroponic greenhouse conditions. Ozone Sci Eng 26(5):517–521. doi:10.1080/01919510490507937

    CAS  Google Scholar 

  • James E, Bodman K, Forsberg L, De Hayr R (1995a) Is irrigation water the culprit? Flower Link (June):31–41

  • James E, Mebalds M, Beardsell D, van der Linden A, Tregea W (1995b) Recycling water in the Australian nursery and flower industries: managing water quality and pathogen disinfestation. HRDC Final Report NY320, 127 pp

  • Jenkins SF, Averre CW (1983) Root diseases of vegetables in hydroponic culture systems in North Carolina greenhouses. Plant Dis 67(9):968–970

    Google Scholar 

  • Jochems R (2006) Ditch systems for biological filtration of recycled irrigation water. Comb Proc Int Plant Propag Soc 56:192–193

    Google Scholar 

  • Johnson JD, Overby R (1971) Bromine and bromamine disinfection chemistry. J Sanit Eng Div Proc Am Soc Civil Eng 97(SA 5):617–628

    CAS  Google Scholar 

  • Kabashima JN (1993) Innovative irrigation techniques in nursery production to reduce water usage. HortScience 28(4):291–293

    Google Scholar 

  • Kim C, Hung Y-C, Brackett RE (2000) Efficacy of electrolyzed oxidizing (EO) and chemically modified water on different types of foodborne pathogens. Int J Food Microbiol 61(2–3):199–207

    PubMed  CAS  Google Scholar 

  • Klotz LJ, Wong P-P, DeWolfe TA (1959) Survey of irrigation water for the presence of Phytophthora spp. pathogenic to citrus. Plant Dis Rep 43(7):830–832

    Google Scholar 

  • Kong P, Hong CX, Jeffers SN, Richardson PA (2003a) A species-specific polymerase chain reaction assay for rapid detection of Phytophthora nicotianae in irrigation water. Phytopathology 93(7):822–831

    PubMed  CAS  Google Scholar 

  • Kong P, Hong CX, Richardson PA (2003b) Rapid detection of Phytophthora cinnamomi using PCR with primers derived from the Lpv putative storage protein genes. Plant Pathol 52(6):681–693

    CAS  Google Scholar 

  • Krczal G, Albouy J, Damy I, Kusiak C, Deogratias JM, Moreau JP, Berkelmann B, Wohanka W (1995) Transmission of Pelargonium flower break virus (PFBV) in irrigation systems and by thrips. Plant Dis 79(2):163–166

    Google Scholar 

  • Kuhajek JM, Jeffers SN, Slattery M, Wedge DE (2003) A rapid microbioassay for discovery of novel fungicides for Phytophthora spp. Phytopathology 93(1):46–53

    PubMed  CAS  Google Scholar 

  • Lacy GH, Lambe RC, Berg CM (1981) Iris soft rot caused by Erwinia chrysanthemi, associated with overhead irrigation and its control by chlorination. Comb Proc Int Plant Propag Soc 31:624–634

    Google Scholar 

  • Lake J (2000) Counting the benefits of treating water. Aust Nurs Manag (December):4–6

  • Lane (2004) Audit and gap analysis of nursery wastewater research and communication. Horticulture Australia Final Report NY02024, 265 pp

  • Lang JM, Rebits B, Newman SE, Tisserat N (2008) Monitoring mortality of Pythium zoospores in chlorinated water using oxidation reduction potential. Plant Health Prog. doi:10.1094/PHP-2008-0922-01-RS

  • Langlais C, Laplanche A, Wolbert D, Durand G, Tirrily Y (2001) Detoxification and disinfection by O3/H2O2 for greenhouse effluents reuse using static mixers. Ozone Sci Eng 23(5):385–392

    CAS  Google Scholar 

  • Le Quillec S, Déniel F, Rey P, Guillou A (2005) L’épuration des eaux de drainage par biofiltration. Centre Technique Interprofessionel des Fruits et Légume (Ctifl), 4 pp

  • Lesikar BJ, Kenimer AL, Arnold MA, Bauer BC, Goyne MW, Wilkerson DC, Lang HJ (1997) Nursery runoff collection and treatment systems. Paper presented at the annual international meeting of the American Society of Agricultural Engineers, Minneapolis, 10–14 Aug 1997

  • Liu M, Lau AK, Lo KV (1999) Ultrafiltration tests for the reutilization of greenhouse wastewater. J Environ Sci Health B Pesticides Food Contam Agric Wastes 34(6):1101–1110

    CAS  Google Scholar 

  • Lloyd B (1973) The construction of a sand profile sampler: its use in the study of Vorticella populations and the general interstitial microfauna of slow sand filters. Water Res 7(7):963–973

    Google Scholar 

  • Lutz AL, Menge JA (1991) Population fluctuations and the numbers and types of propagules of Phytophthora parasitica that occur in irrigated citrus groves. Plant Dis 75(2):173–179

    Google Scholar 

  • MacDonald JD, Ali-Shtayeh MS, Kabashima J, Stites J (1994) Occurrence of Phytophthora species in recirculated nursery irrigation effluents. Plant Dis 78(6):607–611

    Google Scholar 

  • MacDonald JD, Abeliovich A, Lagunas-Solar MC, Faiman D, Kabashima J (1997) Treatment of irrigation effluent water to reduce nitrogenous contaminants and plant pathogens. BARD Scientific Reports, BARD, Bet Dagan, Israel

    Google Scholar 

  • Mafia RG, Alfenas AC, Ferreira EM, Machado PS, Binoti DHB, Leitel FP, Souza FL (2008) Reuse of untreated irrigation water as a vehicle of inoculum of pathogens in eucalyptus clonal nursery. Trop Plant Pathol 33(2):96–102

    Google Scholar 

  • McCarter-Zorner NJ, Franc GD, Harrison MD, Michaud JE, Quinn CE, Sells IA, Graham DC (1984) Soft rot Erwinia bacteria in surface and underground waters in southern Scotland and in Colorado, United States. J Appl Bacteriol 57(1):95–105

    Google Scholar 

  • McCracken JL, Jeffers SN (2000) Some factors affecting recovery of Phytophthora spp from recycled irrigation water. Phytopathology 90(6, Supplement):S127

    Google Scholar 

  • McIntosh DL (1966) Occurrence of Phytophthora spp. in irrigation systems in British Columbia. Can J Bot 44(12):1591–1596

    Google Scholar 

  • McNair DR, Sims RC, Sorensen DL, Hulbert M (1987) Schmutzdecke characterization of clinoptilolite-amended slow sand filtration. Am Water Works Assoc J 79(12):74–81

    CAS  Google Scholar 

  • McPherson GM, Harriman MR, Pattison D (1995) The potential for spread of root diseases in recirculating hydroponic systems and their control with disinfection. Mededelingen Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen Universiteit Gent 60(2b):371–379

    Google Scholar 

  • Mebalds M, van der Linden A, Bankier M, Beardsell D (1996) Using ultraviolet radiation and chlorine dioxide to control fungal plant pathogens in water. Nurs Pap Issue 5:1–2

    Google Scholar 

  • Mebalds M, Bankier M, Beardsell D (1997a) Ozone disinfection of water. Paper presented at the Australian nursery industry conference proceedings, Perth, 27 Feb–3 Mar 1997

  • Mebalds M, Bankier M, Beardsell D, van der Linden A, Tregea W, Tawfik F, Roberts G (1997b) Monitoring and treatment of recycled water for nursery and floriculture production. HRDC Final Report NY515, 31 pp

  • Menzies JG, Ehret DL, Stan S (1996) Effect of inoculum density of Pythium aphanidermatum on the growth and yield of cucumber plants grown in recirculating nutrient film culture. Can J Plant Pathol 18(1):50–54

    Google Scholar 

  • Milbocker DC (1988) Salt tolerance of azalea cultivars. J Am Soc Hortic Sci 113(1):79–84

    Google Scholar 

  • Mine Y, Sakiyama R, Yamaki Y, Suematsu M, Saka H (2003) Influence of ripening state of filters on microbe removal efficiency of slow sand filtration used to disinfect a closed soilless culture system. J Jpn Soc Hortic Sci 72(3):190–196

    Google Scholar 

  • Moorman GW, Kim SH (2004) Species of Pythium from greenhouses in Pennsylvania exhibit resistance to propamocarb and mefenoxam. Plant Dis 88(6):630–632

    CAS  Google Scholar 

  • Nakagawara S, Goto T, Nara M, Ozawa Y, Hotta K, Arata Y (1998) Spectroscopic characterization and the pH dependence of bactericidal activity of the aqueous chlorine solution. Anal Sci 14(4):691–698

    CAS  Google Scholar 

  • Newman SE (2004) Disinfecting irrigation water for disease management. Paper presented at the 20th annual conference on pest management on ornamentals, San Jose, 20–22 Feb 2004

  • Ng K (1999) Treatment of greenhouse recirculation water: biosand filtration. Irrigation factsheet (July). Minstry of Agriculture, Food and Fisheries, British Columbia

    Google Scholar 

  • NGIA (2005) Nursery industry water management best practice guidelines. Nursery Industry Association of Australia, Epping

    Google Scholar 

  • Nielsen CJ, Stanghellini ME, Ferrin DM (2004) Phytophthora in recirculating cultural systems: the influence of different irrigation regimes on disease development. Phytopathology 94(6, Supplement):S153

    Google Scholar 

  • Niu G, Rodriguez DS (2006a) Relative salt tolerance of five herbaceous perennials. HortScience 41(6):1493–1497

    Google Scholar 

  • Niu GH, Rodriguez DS (2006b) Relative salt tolerance of selected herbaceous perennials and groundcovers. Sci Hortic 110(4):352–358. doi:10.1016/j.scienta.2006.07.020

    CAS  Google Scholar 

  • Niu G, Rodriguez DS, Aguiniga L, Mackay W (2007) Salinity tolerance of Lupinus havardii and Lupinus texensis. HortScience 42(3):526–528

    Google Scholar 

  • Norman DJ, Yuen JMF, Resendiz R, Boswell J (2003) Characterization of Erwinia populations from nursery retention ponds and lakes infecting ornamental plants in Florida. Plant Dis 87(2):193–196. doi:10.1094/pdis.2003.87.2.193

    Google Scholar 

  • Ohtani T, Kaneko A, Fukuda N, Hagiwara S, Sase S (2000) Development of a membrane disinfection system for closed hydroponics in a greenhouse. J Agric Eng Res 77(2):227–232

    Google Scholar 

  • Oomori T, Oka T, Inuta T, Arata Y (2000) The efficiency of disinfection of acidic electrolyzed water in the presence of organic materials. Anal Sci 16(4):365–369

    CAS  Google Scholar 

  • Osman M, Abo-Zeid A (1987) Effect of UV-irradiation on total protein and nucleic acids in Alternaria alternata and Fusarium solani. Ann Bot 60(6):677–680

    CAS  Google Scholar 

  • Pagliaccia D, Merhaut D, Stanghellini ME (2004) Enhancement of the fluorescent pseudomonad population after amending the recirculating nutrient solution of hydroponically-grown plants with a nitrogen stabilizer. Phytopathology 94(6, Supplement):S80

    Google Scholar 

  • Pagliaccia D, Ferrin D, Stanghellini ME (2007) Chemo-biological suppression of root-infecting zoosporic pathogens in recirculating hydroponic systems. Plant Soil 299(1–2):163–179. doi:10.1007/s11104-007-9373-7

    CAS  Google Scholar 

  • Pagliaccia D, Merhaut D, Colao MC, Ruzzi M, Saccardo F, Stanghellini ME (2008) Selective enhancement of the fluorescent pseudomonad population after amending the recirculating nutrient solution of hydroponically grown plants with a nitrogen stabilizer. Microb Ecol 56(3):538–554. doi:10.1007/s00248-008-9373-z

    PubMed  CAS  Google Scholar 

  • Paludan N (1985) Spread of viruses by recirculated nutrient solutions in soilless cultures. Tidsskrift for Planteavl 89(5):467–474

    Google Scholar 

  • Pares RD, Gunn LV, Cresswell GC (1992) Tomato mosaic virus infection in a recirculating nutrient solution. J Phytopathol 135(3):192–198

    Google Scholar 

  • Park KW, Lee GP, Kim MS, Lee SJ, Seo MW (1998) Control of several fungi in the recirculating hydroponic system by modified slow sand filtration. Korean J Hortic Sci Technol 16(3):347–349

    Google Scholar 

  • Parnell JR (1988) Irrigation of landscape ornamentals using reclaimed water. Proc Fla State Hortic Soc 101:107–110

    Google Scholar 

  • Pell EJ, Schlagnhaufer CD, Arteca RN (1997) Ozone-induced oxidative stress: mechanisms of action and reaction. Physiol Plant 100(2):264–273

    CAS  Google Scholar 

  • Pettitt T (2002) Slow sand filters for control of fungal plant pathogens. Good Fruit Veg (August):48

  • Pettitt T (2003) Fertigation: developments in pathogen removal from recycled water. In: Dahlia greidinger symposium, Izmir, 8 Dec 2003, pp 1–20

  • Pettitt TR, Finlay AR, Scott MA, Davies EM (1998) Development of a system simulating commercial production conditions for assessing the potential spread of Phytophthora cryptogea root rot of hardy nursery stock in recirculating irrigation water. Ann Appl Biol 132(1):61–75

    Google Scholar 

  • Pettitt TR, Wakeham AJ, Wainwright MF, White JG (2002) Comparison of serological, culture, and bait methods for detection of Pythium and Phytophthora zoospores in water. Plant Pathol 51(6):720–727

    Google Scholar 

  • Pettitt TR, Monaghan JM, Crawford MA (2008) Assessment of the control of Phytophthora root rot disease spread by Spin Out®-treated fabrics in container-grown hardy nursery-stock. Crop Prot 27(2):198–207. doi:10.1016/j.cropro.2007.05.007

    CAS  Google Scholar 

  • Phillips DJ, Grendahl J (1973) Effect of chlorinating hydrocooling water on Monilina fructicola conidia and brown rot. Plant Dis Rep 57(10):814–816

    CAS  Google Scholar 

  • Pittis JE, Colhoun J (1984) Isolation and identification of pythiaceous fungi from irrigation water and their pathogenicity to Antirrhinum, tomato and Chamaecyparis lawsoniana. Phytopathologische Zeitschrift 110(4):301–318

    Google Scholar 

  • Poncet C, Offroy M, Bonnet G, Brun R (2001) Disinfection of recycling water in rose cultures. Acta Hortic 547:121–126

    CAS  Google Scholar 

  • Postma J (2004) Suppressiveness of root pathogens in closed cultivation systems. Acta Hortic 644:503–510

    Google Scholar 

  • Postma J, Willemsen-de Klein MJEIM, van Elsas JD (2000) Effect of the indigenous microflora on the development of root and crown rot caused by Pythium aphanidermatum in cucumber grown on rockwool. Phytopathology 90(2):125–133

    PubMed  CAS  Google Scholar 

  • Price TV, Fox P (1984) Behaviour of fungicides in recirculating nutrient film hydroponic systems. In: Proceedings of the 6th international congress on soilless culture, Lunteren, 28 Apr–5 May 1984, pp 511–522

  • Pyper GR, Logsdon GS (1991) Slow sand filter design. In: Logsdon GS (ed) Slow sand filtration. American Society of Civil Engineers, New York, pp 122–148

    Google Scholar 

  • Rao MP, Davis KR (2001) The physiology of ozone-induced cell death. Planta 213(5):682–690

    PubMed  CAS  Google Scholar 

  • Rattink H (1990) Epidemiology of fusarium wilt in cyclamen in an ebb and flow system. Neth J Plant Pathol 96(3):171–177

    Google Scholar 

  • Reeser PW (1998) Disinfection for plant protection. Am Nurserym 187(12):52–56

    Google Scholar 

  • Rey P, Déniel F, Vasseur V, Tirilly Y, Benhamou N (2001) Evolution of Pythium spp. populations in soilless cultures and their control by active disinfecting methods. Acta Hortic 554:341–348

    Google Scholar 

  • Richard S, Zheng Y, Dixon M (2006) To recycle or not to recycle? Greenh Can (December):22–24

  • Ridley JE (1967) Experiences in the use of slow sand filtration, double sand filtration and microstraining. J Inst Water Eng Stat 33(1):170–191

    Google Scholar 

  • Rolfe C (2001) Picking the right disinfestation system. Aust Nurs Manag 25(6):9

    Google Scholar 

  • Rolfe C, Currey A, Atkinson I (1994) Managing water in plant nurseries: a guide to irrigation, drainage and water recycling in containerised plant nurseries. Horticultural Research and Development Corporation, Nursery Industry Association of Australia, and NSW Agriculture, Wollongbar

    Google Scholar 

  • Rolfe C, Yiasoumi W, Keskula E (2000) Managing water in plant nurseries: a guide to irrigation, drainage and water recycling in containerised plant nurseries, 2nd edn. NSW Agriculture, Orange

    Google Scholar 

  • Rosner A, Lachman O, Pearlsman M, Feigelson L, Maslenin L, Antignus Y (2006) Characterisation of cucumber leaf spot virus isolated from recycled irrigation water of soil-less cucumber cultures. Ann Appl Biol 149(3):313–316

    CAS  Google Scholar 

  • Runia WT (1989) Elimination of plant pathogens in drainwater from soilless cultures. In: Proceedings international congress on soilless culture, international society for soilless culture, Flevohof, 13–21 May 1988. The Secretariat of International Society for Soilless Culture, Wageningen, pp 429–443

  • Runia WT (1994a) Disinfection of recirculation water from closed cultivation systems with ozone. Acta Hortic 361:388–396

    Google Scholar 

  • Runia WT (1994b) Elimination of root-infecting pathogens in recirculation water from closed cultivation systems by ultra-violet radiation. Acta Hortic 361:361–371

    Google Scholar 

  • Runia WT (1995) A review of possibilities for disinfection of recirculation water from soilless cultures. Acta Hortic 382:221–229

    Google Scholar 

  • Runia WT, Amsing JJ (2001) Lethal temperatures of soilborne pathogens in recirculation water from closed cultivation systems. Acta Hortic 554:333–339

    Google Scholar 

  • Runia WT, Boonstra S (2004) UV-oxidation technology for disinfection of recirculation water in protected cultivation. Acta Hortic 644:549–553

    Google Scholar 

  • Runia WT, van Os EA, Bollen GJ (1988) Disinfection of drainwater from soilless cultures by heat treatment. Neth J Agric Sci 36(3):231–238

    Google Scholar 

  • Sanders PL (1984) Failure of metalaxyl to control Pythium blight on turfgrass in Pennsylvania. Plant Dis 68(9):776–777

    Google Scholar 

  • Sanders PL, Houser WJ, Parish PJ, Cole H (1985) Reduced-rate fungicide mixtures to delay fungicide resistance and to control selected turfgrass diseases. Plant Dis 69(11):939–943

    CAS  Google Scholar 

  • Sanogo S, Moorman GW (1993) Transmission and control of Pythium aphanidermatum in an ebb-and-flow subirrigation system. Plant Dis 77(3):287–290

    Google Scholar 

  • Schnitzler WH (2004) Pest and disease management of soilless culture. Acta Hortic 648:191–203

    Google Scholar 

  • Schwartzkopf SH, Dudzinski D, Minners RS (1987) The effects of nutrient solution sterilization on the growth and yield of hydroponically grown lettuce. HortScience 22(5):873–874

    PubMed  CAS  Google Scholar 

  • Segall RH (1968) Fungicidal effectiveness of chlorine as influenced by concentration, temperature, pH and spore exposure time. Phytopathology 58(10):1412–1414

    CAS  Google Scholar 

  • Shield B (2001) Understanding sodium hypochlorite as a disinfectant. Aust Hortic 99(6):60–64

    Google Scholar 

  • Shokes FM, McCarter SM (1978) Survival of selected plant pathogenic fungi in a surface irrigation pond. Phytopathol News 12(9):209

    Google Scholar 

  • Shokes FM, McCarter SM (1979) Occurrence, dissemination, and survival of plant pathogens in surface irrigation ponds in southern Georgia. Phytopathology 69(5):510–516

    Google Scholar 

  • Skimina CA (1992) Recycling water, nutrients, and waste in the nursery industry. HortScience 27(9):968–971

    Google Scholar 

  • Smith PM (1979) Study of the effects of fungitoxic compounds on Phytophthora cinnamomi in water. Ann Appl Biol 93(2):149–157

    CAS  Google Scholar 

  • Smith PM, Ousley MA, Middleton J (1985) Epidemiology and control of Phytophthora root diseases of woody ornamentals. Annu Rep Glasshouse Crops Res Inst 1984:102–105

    Google Scholar 

  • Spencer S, Benson DM (1982) Pine bark, hardwood bark compost, and peat amendment effects on development of Phytophthora spp. and lupine root rot. Phytopathology 72(3):346–351

    Google Scholar 

  • Stanghellini ME, Miller RM (1997) Biosurfactants: their identity and potential efficacy in the biological control of zoosporic plant pathogens. Plant Dis 81(1):4–12

    CAS  Google Scholar 

  • Stanghellini ME, Stowell LJ, Bates ML (1984) Control of root-rot of spinach caused by Pythium aphanidermatum in a recirculating hydroponic system by ultraviolet irradiation. Plant Dis 68(12):1075–1076

    Google Scholar 

  • Stanghellini ME, Rasmussen SL, Kim DH, Rorabaugh PA (1996) Efficacy of nonionic surfactants in the control of zoospore spread of Pythium aphanidermatum in a recirculating hydroponic system. Plant Dis 80(4):422–428

    CAS  Google Scholar 

  • Stanghellini ME, Nielsen CJ, Kim DH, Rasmussen SL, Rorbaugh PA (2000) Influence of sub- versus top-irrigation and surfactants in a recirculating system on disease incidence caused by Phytophthora spp. in potted pepper plants. Plant Dis 84(10):1147–1150

    CAS  Google Scholar 

  • Stanton JM, O’Donnell WE (1994) Hatching, motility, and infectivity of root-knot nematode (Meloidogyne javanica) following exposure to sodium hypochlorite. Aust J Exp Agric 34(1):105–108

    CAS  Google Scholar 

  • Steadman JR, Maier CR, Schwartz HF, Kerr ED (1974) Pollution of surface irrigation waters by plant pathogenic organisms. Water Resour Bull 11(4):796–804

    Google Scholar 

  • Steadman JR, Bay RW, Hammer MJ (1979) Plant pathogen contamination in reused irrigation waste water. Proc Water Reuse Symp 3:2038–2045

    Google Scholar 

  • Steddom K (2009) Detecting Phytophthora in recycled nursery irrigation water in East Texas. Phytopathology 99(6, Supplement):S124

    Google Scholar 

  • Steinberg C, Moulin F, Gaillard P, Gautheron N, Stawiecki K, Bremeersch P, Alabouvette C (1994) Disinfection of drain water in greenhouses using a wet condensation heater. Agronomie 14(9):627–635

    Google Scholar 

  • Stevik TK, Aa K, Ausland G, Hanssen JF (2004) Retention and removal of pathogenic bacteria in wastewater percolating through porous media: a review. Water Res 38(6):1355–1367

    PubMed  CAS  Google Scholar 

  • Stewart JC, Lemley AT, Hogan SI, Weismiller RA, Hornsby AG (2001) Health effects of drinking water contaminants. http://edis.ifas.ufl.edu

  • Stringfellow B, Reddy MB (2005) Control of Phytophthora in nursery recycled and fresh inlet irrigation water by Agrifos systemic fungicide treatment. Phytopathology 95(6, Supplement):S100

    Google Scholar 

  • Strong SS, Behe BK, Deneke CF, Bowen KL, Keever GJ (1997) Cultivar and spacing effects on transmission of Phytophthora parasitica in an ebb-and-flow subirrigation system. Plant Dis 81(1):89–95

    Google Scholar 

  • Sussman S, Rauh JS (1978) Use of chlorine dioxide in water and wastewater treatment. In: Rice RG, Cotruvo JA (eds) Ozone/chlorine dioxide oxidation products of organic materials, Proceedings of a conference, Cincinnati, 17–19 Nov 1976. Ozone Press International, Cleveland, pp 344–355

  • Themann K, Werres S, Diener HA, Luttmann R (2002a) Comparison of different methods to detect Phytophthora spp. in recycling water from nurseries. J Plant Pathol 84(1):41–51

    Google Scholar 

  • Themann K, Werres S, Luttmann R, Diener HA (2002b) Observations of Phytophthora spp. in water recirculation systems in commercial hardy ornamental nursery stock. Eur J Plant Pathol 108(4):337–343

    Google Scholar 

  • Thinggaard K, Andersen H (1995) Influence of watering frequency and electrical conductivity of the nutrient solution on Phytophthora root rot in pot plants of Gerbera. Plant Dis 79(3):259–263

    Google Scholar 

  • Thinggaard K, Middelboe AL (1989) Phytophthora and Pythium in pot plant cultures grown on ebb and flow bench with recirculating nutrient solution. J Phytopathol 125(4):343–352

    Google Scholar 

  • Thomson SV, Allen RM (1974) Occurrence of Phytophthora species and other potential plant pathogens in recycled irrigation water. Plant Dis Rep 58(10):945–949

    Google Scholar 

  • Tomlinson JA, Faithfull EM (1979) Effects of fungicides and surfactants on the zoospores of Olpidium brassicae. Ann Appl Biol 93(1):13–19

    CAS  Google Scholar 

  • Tomlinson JA, Faithfull EM (1980) Studies on the control of lettuce big-vein disease in recirculated nutrient solutions. Acta Hortic 98:325–332

    Google Scholar 

  • Tomlinson JA, Thomas BJ (1986) Studies on melon necrotic spot virus disease of cucumber and on the control of the fungus vector (Olpidium radicale). Ann Appl Biol 108(1):71–80

    Google Scholar 

  • Toppe B, Thinggaard K (1998) Prevention of Phytophthora root rot in Gerbera by increasing copper ion concentration in the nutrient solution. Eur J Plant Pathol 104(4):359–366

    CAS  Google Scholar 

  • Tu JC (2004) An integrated control measure for Pythium root rot of hydroponically grown greenhouse cucumbers. Acta Hortic 644:571–574

    Google Scholar 

  • Tu JC, Harwood B (2005) Disinfestation of recirculating nutrient solution by filtration as a means to control Pythium root rot of tomatoes. Acta Hortic 695:303–307

    Google Scholar 

  • Tu JC, Zhang W-Z (2000) Comparison of heat, sonication and ultraviolet irradiation in eliminating Pythium aphanidermatum zoospores in recirculating nutrient solution. Acta Hortic 532:137–142

    Google Scholar 

  • Tu JC, Papadopoulos AP, Hao X, Zheng J (1999) The relationship of Pythium root rot and rhizosphere microorganisms in a closed circulating and an open system in rockwool culture of tomato. Acta Hortic 481:577–583

    Google Scholar 

  • Ufer T, Werres S, Posner M, Wessels H-P (2008) Filtration to eliminate Phytophthora spp. from recirculating water systems in commercial nurseries. Plant Health Prog. doi:10.1094/PHP-2008-0314-01-RS

  • van der Gaag DJ, Kerssies A, Lanser C (2001) Spread of Phytophthora root and crown rot in Saintpaulia, Gerbera and Spathiphyllum pot plants in ebb-and-flow-systems. Eur J Plant Pathol 107(5):535–542

    Google Scholar 

  • Van Kuik AJ (1992) Spread of Phytophthora cinnamomi Rands in a recycling system. Mededelingen Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen Universiteit Gent 57(2a):139–143

    Google Scholar 

  • Van Kuik AJ (1994) Eliminating Phytophthora cinnamomi in a recirculated irrigation system by slow sand filtration. Mededelingen Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen Universiteit Gent 59(3a):1059–1063

    Google Scholar 

  • van Meggelen-Laagland I (1996) High-tech ways to sterilize irrigation water. GrowerTalks 60(3):114–123

    Google Scholar 

  • van Os EA (2000) General practices in Europe: disinfection of the recirculating nutrient solution. In: Canadian greenhouse conference: workshop on recirculation and diseases in vegetable production, University of Guelph, Guelph, 4–5 Oct 2000. http://www.canadiangreenhouseconference.com/talks/2000/2000-VanOs2.pdf

  • van Os EA, Alsanius B (2004) Workshop: disinfestation of recirculated nutrient solution—towards new approaches? Acta Hortic 644:605–607

    Google Scholar 

  • van Os EA, Postma J (2000) Prevention of root diseases in closed soilless systems by microbial optimisation and slow sand filtration. Acta Hortic 532:97–102

    Google Scholar 

  • van Os EA, Van Kuik FJ, Runia WT, van Buuren J (1998) Prospects of slow sand filtration to eliminate pathogens from recirculating nutrient solutions. Acta Hortic 458:377–382

    Google Scholar 

  • van Os EA, Amsing JJ, Van Kuik AJ, Willers H (1999) Slow sand filtration: a potential method for the elimination of pathogens and nematodes in recirculating nutrient solutions from glasshouse-grown crops. Acta Hortic 481:519–525

    Google Scholar 

  • van Os EA, Bruins M, Wohanka W, Seidel R (2001) Slow filtration: a technique to minimize the risks of spreading root-infecting pathogens in closed hydroponic systems. Acta Hortic 559:495–502

    Google Scholar 

  • van Os EA, Bruins M, Postma J, Willemsen-de Klein MJEIM (2004) Investigations on crop developments and microbial suppressiveness of Pythium aphanidermatum after different disinfection treatments of the circulating nutrient solution. Acta Hortic 644:563–570

    Google Scholar 

  • Vanachter A, Thys L, Van Wambeke E, Van Assche C (1988) Possible use of ozon for disinfestation of plant nutrient solutions. Acta Hortic 221:295–302

    Google Scholar 

  • Vanachter A, Van Wambeke E, Van Assche C (1992) Influence of thiophanate-methyl and zinc on the development of lettuce ring necrosis disease and its vector Olpidium brassicae in NFT grown lettuce. Mededelingen Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen Universiteit Gent 57(2a):249–257

    CAS  Google Scholar 

  • Vanachter A, Van Wambeke E, Van Assche C (1993) Activity of different zinc containing dithiocarbamate fungicides against Plasmodiophora brassicae of brassicas. Mededelingen Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen Universiteit Gent 58(3b):1485–1491

    CAS  Google Scholar 

  • Venkitanarayanan KS, Ezeike GO, Hung Y-C, Doyle MP (1999) Efficacy of electrolyzed oxidizing water for inactivating Escherichia coli O157: H7, Salmonella enteritidis, and Listeria monocytogenes. Appl Environ Microbiol 65(9):4276–4279

    PubMed  CAS  Google Scholar 

  • von Broembsen SL, Deacon JW (1997) Calcium interference with zoospore biology and infectivity of Phytophthora parasitica in nutrient irrigation solutions. Phytopathology 87(5):522–528

    Google Scholar 

  • von Griesbach E, Lattauschke E (1991) Transmission of Clavibacter michiganensis subsp. michiganensis in hydroponic cultures of tomatoes and possibilities of control. Nachrichtenblatt Deutsche Pflanzenschutzdienst 43(4):69–73

    Google Scholar 

  • Wakeham AJ, Pettitt TR, White JG (1997) A novel method for detection of viable zoospores of Pythium in irrigation water. Ann Appl Biol 131(3):427–435

    Google Scholar 

  • Weber-Shirk ML, Dick RI (1997a) Biological mechanisms in slow sand filters. Am Water Works Assoc J 89(2):72–83

    CAS  Google Scholar 

  • Weber-Shirk ML, Dick RI (1997b) Physical-chemical mechanisms in slow sand filters. Am Water Works Assoc J 89(1):87–100

    CAS  Google Scholar 

  • Werres S, Wagner S, Brand T, Kaminski K, Seipp D (2007) Survival of Phytophthora ramorum in recirculating irrigation water and subsequent infection of Rhododendron and Viburnum. Plant Dis 91(8):1034–1044. doi:10.1094/pdis-91-8-1034

    Google Scholar 

  • White JC (1999) Handbook of chlorination and alternative disinfectants, 4th edn. Wiley, New York

    Google Scholar 

  • Whiteside JO, Oswalt TW (1973) Unusual brown rot outbreak in a Florida citrus grove following sprinkler irrigation with Phytophthora-infested water. Plant Dis Rep 57(5):391–393

    Google Scholar 

  • Wilkerson DC (2000) Cleaning up recycled water. GrowerTalks 63(10):122

    Google Scholar 

  • Wilson SK, von Broembsen SL, Smolen MD, Andrews MW (1998) Pathogen management in capture and recycle irrigation systems for nurseries. In: ASAE annual international meeting, Orlando, 12–16 July, 1998, pp 1–6

  • Wohanka W (1995) Disinfection of recirculating nutrient solutions by slow sand filtration. Acta Hortic 382:246–255

    Google Scholar 

  • Wohanka W, Helle M (1996) Suitability of various filter media for slow filtration. In: Proceedings of the 9th international congress on soilless culture St Helier, 12–19 Apr 1996, pp 551–557

  • Wohanka W, Luedtke H, Ahlers H, Luebke M (1999) Optimization of slow filtration as a means for disinfecting nutrient solutions. Acta Hortic 481:539–544

    Google Scholar 

  • Wu L, Guo X, Harivandi A (2001) Salt tolerance and salt accumulation of landscape plants irrigated by sprinkler and drip irrigation systems. J Plant Nutr 24(9):1473–1490

    CAS  Google Scholar 

  • Yakabe LE (2007) Epidemiology and management of Phytophthora ramorum in ornamental nurseries. PhD, University of California, Davis

  • Yakabe L, MacDonald J (2005) The effects of a surfactant on Phythophthora ramorum. Phytopathology 95(6, Supplement):S115

    Google Scholar 

  • Yamamoto H, Terada T, Naganawa T, Tatsuyama K (1990) Disinfectant effect of ozonation on water infested with several root-infecting pathogens. Ann Phytopathol Soc Jpn 56(2):250–251

    CAS  Google Scholar 

  • Yiasoumi W (2005) Water disinfecting techniques for plant pathogen control. Comb Proc Int Plant Propag Soc 55:138–141

    Google Scholar 

  • Yiasoumi W, Evans L, Rogers L (2005) Farm water quality and treatment, Agfact AC.2, 9th edn. NSW Department of Primary Industries, State of New South Wales

  • Zhang W, Tu JC (2000) Effect of ultraviolet disinfection of hydroponic solutions on Pythium root rot and non-target bacteria. Eur J Plant Pathol 106(5):415–421

    Google Scholar 

Download references

Acknowledgments

This review is based on a report of a study commissioned by Nursery & Garden Industry Australia (NGIA) and funded jointly by the Nursery Industry Levy and the Commonwealth Government via Horticulture Australia Limited (HAL) (Project # NY08002). The author thanks Dr Anthony Kachenko (NGIA) for constructive comments on the draft manuscript of the original study report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally M. Stewart-Wade.

Additional information

Communicated by J. Ayars.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stewart-Wade, S.M. Plant pathogens in recycled irrigation water in commercial plant nurseries and greenhouses: their detection and management. Irrig Sci 29, 267–297 (2011). https://doi.org/10.1007/s00271-011-0285-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00271-011-0285-1

Keywords

Navigation