Skip to main content
Log in

Technical Feasibility and Clinical Efficacy of Iliac Vein Stent Placement in Adolescents and Young Adults with May–Thurner Syndrome

  • Clinical Investigation
  • Venous Interventions
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

To report technical feasibility and clinical efficacy of iliac vein stent placement in adolescent patients with May–Thurner Syndrome (MTS).

Materials and Methods

Single-institution retrospective review of the medical record between 2014 and 2021 found 63 symptomatic patients (F = 40/63; mean age 16.1 years, 12–20 years) who underwent left common iliac vein (LCIV) stent placement for treatment of LCIV compression from an overriding right common iliac artery, or equivalent (n = 1, left IVC). 32/63 (50.7%) patients presented with non-thrombotic iliac vein lesions (NIVL). 31/63 (49.2%) patients presented with deep vein thrombosis of the lower extremity and required catheter-directed thrombolysis after stent placement (tMTS). Outcomes include technically successful stent placement with resolution of anatomic compression and symptom improvement. Stent patency was monitored with Kaplan–Meier analysis at 3, 6, 12, 24, and 36 months. Anticoagulation and antiplatelet (AC/AP) regimens were reported.

Results

Technical success rate was 98.4%. 74 bare-metal self-expanding stents were placed in 63 patients. Primary patency at 12, and 24-months was 93.5%, and 88.9% for the NIVL group and 84.4% and 84.4% for the tMTS group for the same period. Overall patency for the same time intervals was 100%, and 95.4% for the NIVL group and 96.9%, and 96.9% for the tMTS group. Procedural complication rate was 3.2% (2/63) with no thrombolysis-related bleeding complications. Clinical success was achieved in 30/32 (93.8%) and 29/31 (93.5%) patients with tMTS and NIVL groups, respectively.

Conclusion

CIV stent placement in the setting of tMTS and NIVL is technically feasible and clinically efficacious in young patients with excellent patency rates and a favorable safety profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brinegar KN, Sheth RA, Khademhosseini A, et al. Iliac vein compression syndrome: clinical, imaging and pathologic findings. World J Radiol. 2015;7:375–81. https://doi.org/10.4329/wjr.v7.i11.375.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Warad DM, Rao AN, Bjarnason H, Rodriguez V. Clinical outcomes of May–Thurner Syndrome in pediatric patients: a single institutional experience. TH Open Companion J Thromb Haemost. 2020;4:e189–96. https://doi.org/10.1055/s-0040-1714694.

    Article  Google Scholar 

  3. Ahmed O, Ng J, Patel M, et al. Endovascular stent placement for May–Thurner syndrome in the absence of acute deep vein thrombosis. J Vasc Interv Radiol. 2016;27:167–73. https://doi.org/10.1016/j.jvir.2015.10.028.

    Article  PubMed  Google Scholar 

  4. Mahnken AH, Thomson K, De Haan M, O’Sullivan GJ. CIRSE standards of practice guidelines on iliocaval stenting. Cardiovasc Intervent Radiol. 2014;37:889–97. https://doi.org/10.1007/s00270-014-0875-4.

    Article  PubMed  Google Scholar 

  5. Mousa AY, AbuRahma AF. May–Thurner syndrome: update and review. Ann Vasc Surg. 2013;27:984–95. https://doi.org/10.1016/j.avsg.2013.05.001.

    Article  PubMed  Google Scholar 

  6. Ibrahim W, Al Safran Z, Hasan H, Zeid WA. Endovascular management of May–Thurner Syndrome. Ann Vasc Dis. 2012;5:217–21. https://doi.org/10.3400/avd.cr.12.00007.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Moudgill N, Hager E, Gonsalves C, et al. May–Thurner syndrome: case report and review of the literature involving modern endovascular therapy. Vascular. 2009;17:330–5. https://doi.org/10.2310/6670.2009.00027.

    Article  PubMed  Google Scholar 

  8. Gaballah M, Shi J, Kukreja K, et al. Endovascular thrombolysis in the management of iliofemoral thrombosis in children: a multi-institutional experience. J Vasc Interv Radiol. 2016;27:524–30. https://doi.org/10.1016/j.jvir.2015.12.753.

    Article  PubMed  Google Scholar 

  9. Carr S, Chan K, Rosenberg J, et al. Correlation of the diameter of the left common iliac vein with the risk of lower-extremity deep venous thrombosis. J Vasc Interv Radiol. 2012;23:1467–72. https://doi.org/10.1016/j.jvir.2012.07.030.

    Article  PubMed  Google Scholar 

  10. Chan KT, Tye GA, Popat RA, et al. Common iliac vein stenosis: a risk factor for oral contraceptive-induced deep vein thrombosis. Am J Obstet Gynecol. 2011;205:537.e1-537.e6. https://doi.org/10.1016/j.ajog.2011.06.100.

    Article  CAS  PubMed  Google Scholar 

  11. Lungren MP, Ward TJ, Patel MN, et al. Endovascular thrombolysis to salvage central venous access in children with catheter-associated upper extremity deep vein thrombosis: technique and initial results. J Thromb Thrombolysis. 2015;40:274–9. https://doi.org/10.1007/s11239-015-1209-3.

    Article  PubMed  Google Scholar 

  12. Hartung O, Otero A, Boufi M, et al. Mid-term results of endovascular treatment for symptomatic chronic nonmalignant iliocaval venous occlusive disease. J Vasc Surg. 2005;42:1138–43. https://doi.org/10.1016/j.jvs.2005.08.012.

    Article  PubMed  Google Scholar 

  13. Ye K, Lu X, Li W, et al. Long-term outcomes of stent placement for symptomatic nonthrombotic iliac vein compression lesions in chronic venous disease. J Vasc Interv Radiol. 2012;23:497–502. https://doi.org/10.1016/j.jvir.2011.12.021.

    Article  PubMed  Google Scholar 

  14. Kwak H-S, Han Y-M, Lee Y-S, et al. Stents in common iliac vein obstruction with acute ipsilateral deep venous thrombosis: early and late results. J Vasc Interv Radiol. 2005;16:815–21.

    Article  PubMed  Google Scholar 

  15. Goldenberg NA, Branchford B, Wang M, et al. Percutaneous mechanical and pharmacomechanical thrombolysis for occlusive deep vein thrombosis of the proximal limb in adolescent subjects: findings from an institution-based prospective inception cohort study of pediatric venous thromboembolism. J Vasc Interv Radiol. 2011;22:121–32. https://doi.org/10.1016/j.jvir.2010.10.013.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gill AE, Patel KN. The role of interventional radiology in the treatment of acute thrombosis and chronic veno-occlusive disease in children and adolescents. Semin Roentgenol. 2019;54:324–36. https://doi.org/10.1053/j.ro.2019.06.003.

    Article  PubMed  Google Scholar 

  17. Bozkaya H, Cinar C, Ertugay S, et al. Endovascular treatment of iliac vein compression (May–Thurner) Syndrome: angioplasty and stenting with or without manual aspiration thrombectomy and catheter-directed thrombolysis. Ann Vasc Dis. 2015;8:21–8. https://doi.org/10.3400/avd.oa.14-00110.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gong M, Fu G, Liu Z, et al. Rheolytic thrombectomy using an AngioJet ZelanteDVT catheter or a solent omni catheter for patients with proximal vein thrombosis. Thromb J. 2023;21:25. https://doi.org/10.1186/s12959-023-00472-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vedantham S, Kahn SR, Goldhaber SZ, Comerota AJ, Parpia S, Meleth S, Earp D, Williams R, Sista AK, Marston W, Rathbun S, Magnuson EA, Razavi MK, Jaff MR, Clive K. Endovascular therapy for advanced post-thrombotic syndrome: proceedings from a multidisciplinary consensus panel. Vasc Med. 2016;21(4):400–7.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Goldman RE, Arendt VA, Kothary N, et al. Endovascular management of May–Thurner Syndrome in adolescents: a single-center experience. J Vasc Interv Radiol. 2017;28:71–7. https://doi.org/10.1016/j.jvir.2016.09.005.

    Article  PubMed  Google Scholar 

  21. Bondarev S, Keller EJ, Han T, et al. Predictors of disease recurrence after venoplasty and stent placement for May–Thurner Syndrome. J Vasc Interv Radiol. 2019;30:1549–54. https://doi.org/10.1016/j.jvir.2019.07.012.

    Article  PubMed  Google Scholar 

  22. Craig P, Zuchowski A, Young S, et al. Results of endovascular management of May–Thurner syndrome in the acute, subacute, and chronic setting. J Vasc Interv Radiol. 2017;28:S113. https://doi.org/10.1016/j.jvir.2016.12.869.

    Article  Google Scholar 

  23. O’Sullivan GJ, Semba CP, Bittner CA, et al. Endovascular management of iliac vein compression (May–Thurner) Syndrome. J Vasc Interv Radiol. 2000;11:823–36. https://doi.org/10.1016/S1051-0443(07)61796-5.

    Article  PubMed  Google Scholar 

  24. Murphy EH, Davis CM, Journeycake JM, et al. Symptomatic ileofemoral DVT after onset of oral contraceptive use in women with previously undiagnosed May–Thurner Syndrome. J Vasc Surg. 2009;49(3):697–703. https://doi.org/10.1016/j.jvs.2008.10.002.

    Article  PubMed  Google Scholar 

  25. Sayed MH, Salem M, Desai KR, et al. A review of the incidence, outcome, and management of venous stent migration. J Vasc Surg Venous Lymphat Disord. 2022;10:482–90. https://doi.org/10.1016/j.jvsv.2021.07.015.

    Article  PubMed  Google Scholar 

  26. Hacquebord JH, Leopold SS. In brief: the risser classification: a classic tool for the clinician treating adolescent idiopathic scoliosis. Clin Orthop. 2012;470:2335–8. https://doi.org/10.1007/s11999-012-2371-y.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Attaran RR, Ozdemir D, Lin I-H, et al. Evaluation of anticoagulant and antiplatelet therapy after iliocaval stenting: factors associated with stent occlusion. J Vasc Surg Venous Lymphat Disord. 2019;7:527–34. https://doi.org/10.1016/j.jvsv.2019.01.058.

    Article  PubMed  Google Scholar 

  28. Milinis K, Thapar A, Shalhoub J, Davies AH. Antithrombotic therapy following venous stenting: international delphi consensus. Eur J Vasc Endovasc Surg. 2018;55:537–44. https://doi.org/10.1016/j.ejvs.2018.01.007.

    Article  PubMed  Google Scholar 

  29. Arendt VA, Mabud TS, Kuo WT, et al. Comparison of Anticoagulation regimens following stent placement for nonthrombotic lower extremity venous disease. J Vasc Interv Radiol. 2021;32:1584–90. https://doi.org/10.1016/j.jvir.2021.08.016.

    Article  PubMed  Google Scholar 

  30. Neglén P, Hollis KC, Olivier J, Raju S. Stenting of the venous outflow in chronic venous disease: long-term stent-related outcome, clinical, and hemodynamic result. J Vasc Surg. 2007;46:979-990.e1. https://doi.org/10.1016/j.jvs.2007.06.046.

    Article  PubMed  Google Scholar 

  31. Gwozdz AM, Doyle AJ, Hunt BJ, et al. Effect of thrombophilia on clinical outcomes of chronic post-thrombotic patients after iliofemoral stenting with nitinol venous stents. J Vasc Surg Venous Lymphat Disord. 2021;9:888–94. https://doi.org/10.1016/j.jvsv.2020.09.013.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederic J. Bertino.

Ethics declarations

Conflict of interest

The authors have collectively agreed upon the submission to Cardiovascular and Interventional Radiology (CVIR). The authors report no conflicts of interest relevant to the nature of the study. No funding was received to produce this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertino, F.J., Hawkins, C.M., Woods, G.M. et al. Technical Feasibility and Clinical Efficacy of Iliac Vein Stent Placement in Adolescents and Young Adults with May–Thurner Syndrome. Cardiovasc Intervent Radiol 47, 45–59 (2024). https://doi.org/10.1007/s00270-023-03628-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-023-03628-2

Keywords

Navigation