Skip to main content
Log in

Dolomite thermal behaviour: A short review

  • Review Article
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

In the present review work, it is proposed to carry out a bibliographic analysis about the thermal behaviour of the dolomitic mineral. The state of the art of dolomite currently indicates a growing use as a refractory material due to the cheaper alternative it represents compared to other materials such as magnesium oxide. The importance of dolomite apart from its application in the steel industry lies in the fact that it has expanded to other industrial fields such as the production of catalysts, catalyst supports, and industrial effluent purification materials. In these and other applications, understanding the thermal behaviour of the material is necessary to evaluate the feasibility of application. In this review, the different experimental proposals developed over time in terms of thermal behaviour are studied, emphasizing the reaction mechanisms that have been proposed in different investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Richmond C (2004) Refractories handbook. Marcel Dekker Inc., EUA, pp 183–189

  2. Mehmood M, Yaseen M, Khan EU, Khan MJ (2018) Dolomite and dolomitization model-a short review. Int J Hydrology 2:549–553

    Article  Google Scholar 

  3. Warren J (2000) Dolomite: occurrence, evolution and economically important associations. Earth Sci Rev 52:1–81

    Article  CAS  Google Scholar 

  4. Kim J, Kimura Y, Puchala B, Yamazaki T, Becker U, Sun W (2023) Dissolution enables dolomite crystal growth near ambient conditions. Science 382:915–920

    Article  CAS  Google Scholar 

  5. Pina CM, Pimentel C (2017) Formation of dolomite analogues at ambient conditions. Dolomite: formation, characteristics and environmental impact. Nova Science Publishers, Incorporated, pp 115–140

  6. Botia PD, Estrada DA (1972) Boletín de la Sociedad Española de Cerámica y Vidrio 11:235–238Estudio de la constitución y propiedades de un sinter a base de circón-dolomía

  7. Zúñiga M, de Novales JL (1989) Evolución De Los revestimientos de dolomía en las cucharas de las acerías españolas. Boletín De La Sociedad Española De Cerámica Y Vidrio 28:371–378

    Google Scholar 

  8. Pokrovsky OS (2017) Dolomite as enigmatic sedimentary mineral and important technological material. Formation, Characteristics and Environmental Impact Nova Science, Incorporated;, Dolomite, pp ix–xiv

    Google Scholar 

  9. Zhang H, Zhao H, Chen J, Li J, Yu J, Nie J (2013) Defect study of MgO-CaO material doped with CeO2. Advances in Materials Science and Engineering. 2013

  10. Qiu G-b, Peng B, Yue C-s, Guo M, Zhang M (2016) Properties of regenerated MgO–CaO refractory bricks: impurity of iron oxide. Ceram Int 42:2933–2940

    Article  CAS  Google Scholar 

  11. Peng C, Li N, Han B (2009) Effect of zircon on sintering, composition and microstructure of magnesia powders. Sci Sinter 41:11–17

    Article  CAS  Google Scholar 

  12. Lee WE, Rainforth M (1994) Ceramic microstructures: property control by processing. Springer Science & Business Media, pp 453–507

  13. Diwan V, Sar SK, Biswas S, Lalwani R (2020) Adsorptive extraction of uranium (VI) from aqueous phase by dolomite. Groundw Sustainable Dev :100424

  14. Pehlivan E, Özkan AM, Dinç S, Parlayici Ş (2009) Adsorption of Cu2 + and Pb2 + ion on dolomite powder. J Hazard Mater 167:1044–1049

    Article  CAS  Google Scholar 

  15. Xu T, Wang X, Xiao B, Liu W (2021) Single-step production of hydrogen-rich syngas from toluene using multifunctional Ni-dolomite catalysts. Chem Eng J 425:131522

    Article  CAS  Google Scholar 

  16. Islam MW (2020) A review of dolomite catalyst for biomass gasification tar removal. Fuel 267:117095

    Article  CAS  Google Scholar 

  17. Hatmaker P (1931) Utilization of Dolomite and high-magnesium limestone. US Department of the Interior, Bureau of Mines

  18. Luna GCV (2019) Estudio Del Potencial De Rocas carbonáticas dolomíticas en El Departamento Jáchal, San Juan: la perspectiva de desarrollo a través del corredor bioceánico [Tésis De Maestría]. Universidad Nacional de San Juan, San Juan

    Google Scholar 

  19. Sugita K (2008) Historical overview of refractory technology in the steel industry. Shinnittetsu Giho 388:8

    Google Scholar 

  20. Semmeq A, Foucaud Y, El Yamami N, Michailovski A, Lebègue S, Badawi M (2021) Hydration of magnesite and dolomite minerals: new insights from ab initio molecular dynamics. Colloids Surf a 631:127697

    Article  CAS  Google Scholar 

  21. Badapalli PK, Kottala RB, Sree PP, Rajasekhar M (2022) Occurrence and structures of dolomites in North Eastern part of Anantapur district, and their use in engineering materials. Materials Today: Proceedings. 50:1005–10

  22. Li Z, Bowman A, Rayniak A, Xu S (2024) Anionic Dye Alizarin Red S removal using heat-treated Dolomite. Crystals 14:187

    Article  CAS  Google Scholar 

  23. Darweesh HH (2001) Building materials from siliceous clay and low grade dolomite rocks. Ceram Int 27:45–50

    Article  CAS  Google Scholar 

  24. Subagjo, Wulandari W, Adinata PM, Fajrin A (2017) Thermal decomposition of dolomite under CO2-air atmosphere. AIP Conference Proceedings: AIP Publishing LLC; p. 040006

  25. Wiedemann H-G, Bayer G (1987) Note on the thermal decomposition of dolomite. Thermochimica Acta 121:479–485

    Article  CAS  Google Scholar 

  26. Engler P, Santana MW, Mittleman ML, Balazs D (1989) Non-isothermal, in situ XRD analysis of dolomite decomposition. Thermochimica Acta 140:67–76

    Article  CAS  Google Scholar 

  27. De Aza AH, Rodríguez MA, Rodríguez JL, De Aza S, Pena P, Convert P et al (2002) Decomposition of dolomite monitored by neutron thermodiffractometry. J Am Ceram Soc 85:881–888

    Article  Google Scholar 

  28. Fang QF, Zhang HW, Guo Y (2011) Thermal decomposition of dolomite. Trans Tech Publ, Advanced Materials Research, pp 617–619

    Google Scholar 

  29. Bogahawatta V, Abdul-Jaleel A, Behbehani M (2004) The heat treatment and particle size effects in the thermal decomposition of dolomite for separation of constituents. Mineral Process Extractive Metall 113:111–117

    Article  Google Scholar 

  30. Smith JW, Johnson DR, Müller-Vonmoos M (1974) Dolomite for determining atmosphere control in thermal analysis. Thermochimica Acta 8:45–56

    Article  CAS  Google Scholar 

  31. Santani M, Dollimore D, Wilburn F, Alexander K (2001) Isolation and idenfication of the intermediate and final products in the thermal decomposition of dolomite in an atmosphere of carbon dioxide. Thermochim Acta 367:285–295

    Article  Google Scholar 

  32. Otsuka R (1986) Recent studies on the decomposition of the dolomite group by thermal analysis. Thermochimica Acta 100:69–80

    Article  CAS  Google Scholar 

  33. McIntosh R, Sharp J, Wilburn F (1990) The thermal decomposition of dolomite. Thermochimica Acta 165:281–296

    Article  CAS  Google Scholar 

  34. Sadik C, Moudden O, El Bouari A, El Amrani I-E (2016) Review on the elaboration and characterization of ceramics refractories based on magnesite and dolomite. J Asian Ceam Soc 4:219–233

    Article  Google Scholar 

  35. Fazeli A, Tareen J (1991) Thermal decomposition of rhombohedral double carbonates of dolomite type. J Therm Anal Calorim 37:2605–2611

    Article  CAS  Google Scholar 

  36. Ptáček P, Šoukal F, Opravil T (2021) Thermal decomposition of ferroan dolomite: a comparative study in nitrogen, carbon dioxide, air and oxygen. Solid State Sci 122:106778

    Article  Google Scholar 

  37. Kristóf-Makó É, Juhász A (1999) The effect of mechanical treatment on the crystal structure and thermal decomposition of dolomite. Thermochimica Acta 342:105–114

    Article  Google Scholar 

  38. Olszak-Humienik M, Jablonski M (2015) Thermal behavior of natural dolomite. J Therm Anal Calorim 119:2239–2248

    Article  CAS  Google Scholar 

  39. Dollimore D, Dunn J, Lee Y, Penrod B (1994) The decrepitation of dolomite and limestone. Thermochimica Acta 237:125–131

    Article  CAS  Google Scholar 

  40. Haul R, Markus J (1952) On the thermal decomposition of dolomite. IV. Thermogravimetric investigation of the dolomite decomposition. J Appl Chem 2:298–306

    Article  CAS  Google Scholar 

  41. Beruto D, Vecchiattini R, Giordani M (2003) Solid products and rate-limiting step in the thermal half decomposition of natural dolomite in a CO2 (g) atmosphere. Thermochimica Acta 405:183–194

    Article  CAS  Google Scholar 

  42. Caceres P, Attiogbe E (1997) Thermal decomposition of dolomite and the extraction of its constituents. Miner Eng 10:1165–1176

    Article  CAS  Google Scholar 

  43. Kök M, Smykatz-Kloss W (2008) Characterization, correlation and kinetics of dolomite samples as outlined by thermal methods. J Therm Anal Calorim 91:565–568

    Article  Google Scholar 

  44. Shahraki BK, Mehrabi B, Dabiri R (2009) Thermal behavior of Zefreh Dolomite mine (Central Iran). J Min Metall B: Metall 45:35–44

    Article  CAS  Google Scholar 

  45. Gunasekaran S, Anbalagan G (2007) Spectroscopic study of phase transitions in dolomite mineral. Journal of Raman Spectroscopy: An International Journal for Original Work in all aspects of Raman Spectroscopy, including higher order processes, and also Brillouin and. Rayleigh Scattering 38:846–852

    CAS  Google Scholar 

  46. Gunasekaran S, Anbalagan G (2007) Thermal decomposition of natural dolomite. Bull Mater Sci 30:339–344

    Article  CAS  Google Scholar 

  47. Lavat AE, Grasselli MC, Lovecchio EG (2015) The firing steps and phases formed in Mg–Zr–Al refractory dolomite-based materials. Ceram Int 41:2107–2115

    Article  CAS  Google Scholar 

  48. Kashaninia F, Sarpoolaky H, Bagheri A, Naghizadeh R, Zamanipour M, IMPROVING, HYDRATION RESISTANCE OF MAGNESIA-DOLOMA REFRACTORIES BYIRON OXIDE ADDITION (2011) Iran J Mater Sci Eng 8:34–40

    CAS  Google Scholar 

  49. Cardarelli F Ceramics, refractories, and glasses. Materials handbook: a concise desktop reference 2008:593–689

  50. McCauley R, Johnson L (1991) Decrepitation and thermal decomposition of dolomite. Thermochimica Acta 185:271–282

    Article  CAS  Google Scholar 

  51. Rodriguez-Navarro C, Kudlacz K, Ruiz-Agudo E (2012) The mechanism of thermal decomposition of dolomite: new insights from 2D-XRD and TEM analyses. Am Mineral 97:38–51

    Article  CAS  Google Scholar 

  52. Munawaroh F, Baqiya MA, Arifin Z, Triwikantoro T (2023) Thermal Decomposition Analysis of Indonesian Natural Dolomite in Air. Appl Mech Mater 916:19–24

    Article  Google Scholar 

  53. Aliyu WA, Hossain MI, Specht E Numerical Approach in Determination of Thermophysical Material Properties in Decomposition of Lumpy Dolomite Particles. Proceedings of the 9th International Conference on Fluid Flow, Heat and Mass Transfer (FFHMT’22), Niagara Falls, Canada2022

  54. Resio L (2023) Dolomite thermal behaviour: a proposal to establish a definitive decomposition mechanism in a convective air atmosphere. Open Ceram 15:100405

    Article  CAS  Google Scholar 

  55. Qian H, Kai W, Hongde X (2019) A novel perspective of dolomite decomposition: elementary reactions analysis by thermogravimetric mass spectrometry. Thermochimica Acta 676:47–51

    Article  CAS  Google Scholar 

  56. Carter CB, Norton MG (2007) Ceramic materials: science and engineering. Springer, pp 15–29

  57. Etayo Rillo F, Romeo Giménez LM (2011) Simulación del proceso de carbonatación–calcinación para captura de CO2. Estrategias de mejora del proceso

  58. Housecroft C, Sharpe AG (2005) Inorganic Chemistry. Second edition ed: Prentice Hall

  59. MacKenzie K, Meinhold R (1993) Thermal decomposition of dolomite (calcium magnesium carbonate) studied by 25Mg solid-state nuclear magnetic resonance. Thermochimica Acta 230:331–337

    Article  Google Scholar 

  60. West AR (2022) Solid state chemistry and its applications. Wiley

  61. MacKenzie K, Meinhold R (1994) 25Mg nuclear magnetic resonance spectroscopy of minerals and related and inorganics: a survey study. Am Mineral 79:250–260

    CAS  Google Scholar 

  62. Samtani M, Dollimore D, Alexander K (2002) Comparison of dolomite decomposition kinetics with related carbonates and the effect of procedural variables on its kinetic parameters. Thermochimica Acta 392:135–145

    Article  Google Scholar 

  63. Ogilvie JF (2013) La naturaleza del enlace químico 2013¡ No existe tal cosa llamada orbital! Revista de Ciencia y Tecnología Vol 28 Núm 1–2

Download references

Acknowledgements

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

L.C. Resio: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Supervision; Validation; Visualization; Roles/Writing - original draft; Writing - review & editing.

Corresponding author

Correspondence to L. C. Resio.

Ethics declarations

Conflict of interest

The author declares there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Resio, L. Dolomite thermal behaviour: A short review. Phys Chem Minerals 51, 19 (2024). https://doi.org/10.1007/s00269-024-01272-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00269-024-01272-x

Keywords

Navigation