Skip to main content
Log in

Spryite, \({\text{Ag}}_{8}\left({{\text{As}}_{0.5}^{3 +} {\text{As}}_{0.5}^{5 +}}\right){\text{S}}_{6}\): structure determination and inferred absence of superionic conduction of the first As3+-bearing argyrodite

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

We report data on the composition and crystal structure of the first As3+-bearing natural argyrodite, spryite. Spryite has the formula \(({{\text{Ag}}_{7.98} {\text{Cu}}_{0.05}})_{\varSigma = 8.03} ({{\text{As}}_{0.31}^{5 +} {\text{Ge}}_{0.36} {\text{As}}_{0.31}^{3 +} {\text{Fe}}_{0.02}^{3 +}})_{\varSigma = 1.00} {\text{S}}_{5.97}\), ideally \({\text{Ag}}_{8} ({{\text{As}}_{0.5}^{3 +} {\text{As}}_{0.5}^{5 +}}){\text{S}}_{6}\). The crystal studied was found in a sample from the Uchucchacua polymetallic deposit, Oyon district, Cajatambo, Lima Department, Peru. The structure was refined in the space group Pna21 up to R = 0.0782 using 2099 observed reflections [2σ(I) level]. Spryite is intimately twinned with six twin domains. The structure solution showed that As3+ and As5+ coexist in the new mineral, which represents the first case ever discovered in either a mineral or a synthetic compound belonging to a sulfide/sulfosalt group. High-temperature in situ X-ray diffraction experiments indicated that no phase transitions occur in the temperature range investigated and that the mineral does not show any evidence of fast ionic conduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Belin R, Zerouale A, Pradel A, Ribes M (2001) Ion dynamics in the argyrodite compound Ag7GeSe5I: non-Arrhenius behavior and complete conductivity spectra. Solid State Ion 143:445–455

    Article  Google Scholar 

  • Bindi L, Evain M (2007) Gram-Charlier development of the atomic displacement factors into mineral structures: the case of samsonite, Ag4MnSb2S6. Am Miner 92:886–891

    Article  Google Scholar 

  • Bindi L, Downs RT, Menchetti S (2010) The crystal structure of billingsleyite, Ag7(As, Sb)S6, a sulfosalt containing As5+. Can Miner 48:155–162

    Article  Google Scholar 

  • Bindi L, Nestola F, Guastoni A, Zorzi F, Peruzzo L, Raber T (2012) Te-rich canfieldite, Ag8Sn(S, Te)6, from Lengenbach quarry, Binntal, Canton Valais, Switzerland: occurrence, description and crystal structure. Can Miner 50:111–118

    Article  Google Scholar 

  • Brese NE, O’Keeffe M (1991) Bond-valence parameters for solids. Acta Crystallogr B47:192–197

    Article  Google Scholar 

  • Chen HM, Maohua C, Adams S (2015) Stability and ionic mobility in argyrodite-related lithium-ion solid electrolytes. Phys Chem Chem Phys 17:16494–16506

    Article  Google Scholar 

  • Eulenberger G (1977) Die Kristallstrukture der Tieftemperaturmodifikation von Ag8GeS6. Monat Chem 108:901–913

    Article  Google Scholar 

  • Evain M, Gaudin E, Boucher F, Petříček V, Taule-lle F (1998) Structures and phase transitions of the A7PSe6 (A = Ag, Cu) argyrodite-type ionic conductors. I. Ag7PSe6. Acta Crystallogr B 54:376–383

    Article  Google Scholar 

  • Frank D, Gerke B, Eul M, Pöttgen R, Pfitzner A (2013) Synthesis and crystal structure determination of Ag9FeS4.1Te1.9, the first example of an iron containing argyrodite. Chem Mater 25:2339–2345

    Article  Google Scholar 

  • Gaudin E, Boucher F, Evain M (2001) Some factors governing Ag+ and Cu+ low coordination in chalcogenide environments. J Solid State Chem 160:212–221

    Article  Google Scholar 

  • Gu X-P, Watanabe M, Hoshino K, Shibata Y (2003) New find of silver tellurosulphides from the Funan gold deposit, East Shandong, China. Eur J Miner 15:147–155

    Article  Google Scholar 

  • Gu X-P, Watanabe M, Xie X, Peng S, Nakamuta Y, Ohkawa M, Hoshino K, Ohsumi K, Shibata Y (2008) Chenguodaite (Ag9FeTe2S4): a new tellurosulfide mineral from the gold district of East Shandong Peninsula, China. Chin Sci Bull 53:3567–3573

    Article  Google Scholar 

  • Kraus W, Nolze G (1996) PowderCell—a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J Appl Crystallogr 29:301–303

    Article  Google Scholar 

  • Kuhs WF, Nitsche R, Scheunemann K (1979) The argyrodites—a new family of tetrahedrally close-packed structures. Mater Res Bull 14:241–248

    Article  Google Scholar 

  • Oudin E, Picot P, Pillard F, Moëlo Y, Burke E, Zakrzewski A (1982) La benavidesite, Pb4(Mn, Fe)Sb6S14, un nouveau mineral de la serie de la jamesonite. Bull Minér 105:166–169

    Google Scholar 

  • Oxford Diffraction (2006) CrysAlis RED (Version 1.171.31.2) and ABSPACK in CrysAlis RED. Oxford Diffraction Ltd, Abingdon

    Google Scholar 

  • Paar WH, Roberts AC, Berlepsch P, Armbruster T, Topa D, Zagler G (2004) Putzite, (Cu4.7Ag3.3)8GeS6, a new mineral species from Capillitas, Catamarca, Argentina: description and crystal structure. Can Miner 42:1757–1769

    Article  Google Scholar 

  • Petříček V, Dušek M, Palatinus L (2006) JANA2006, a crystallographic computing system. Institute of Physics, Academy of Sciences of the Czech Republic, Prague

    Google Scholar 

  • Putz H (2005) Mineralogy and genesis of epithermal ore deposits at Capillitas, Catamarca Province, NW Argentina. Ph.D. thesis, Salzburg Univ., Salzburg

  • Putz H, Paar WH, Sureda RJ, Roberts AC (2002) Germanium mineralization at Capillitas, Catamarca Province, Argentina. International Mineralogical Association, 18th General Meeting (Edinburgh), Abstract, 265

  • Rao RP, Adams S (2011) Studies of lithium argyrodite solid electrolytes for all-solid-state batteries. Phys Status Solidi A 208:1804–1807

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  • Wang N (1978) New data for Ag8SnS6 (canfieldite) and Ag8GeS6 (argyrodite). N Jahrb Miner Monat 1978:269–272

    Google Scholar 

  • Weisbach A (1886) Argyrodit, ein neues Silbererz. N Jahrb Geol Paläont 2:67–71

    Google Scholar 

  • Winkler C (1886) Germanium, Ge, a new nonmetallic element. Berichte der Deutschen Chem Gesell 19:210–211

    Article  Google Scholar 

  • Zucker UH, Schulz HH (1982) Statistical approaches for the treatment of anharmonic motion in crystals. II. Anharmonic thermal vibrations and effective atomic potentials in the fast ionic conductor lithium nitride (Li3N). Acta Crystallogr A 38:568–576

    Article  Google Scholar 

Download references

Acknowledgments

The paper benefited by the official reviews made by Frantisek Laufek and Christopher Stanley. The research was supported by “progetto d’Ateneo 2013, University of Firenze” to L.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Bindi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bindi, L., Keutsch, F.N., Morana, M. et al. Spryite, \({\text{Ag}}_{8}\left({{\text{As}}_{0.5}^{3 +} {\text{As}}_{0.5}^{5 +}}\right){\text{S}}_{6}\): structure determination and inferred absence of superionic conduction of the first As3+-bearing argyrodite. Phys Chem Minerals 44, 75–82 (2017). https://doi.org/10.1007/s00269-016-0838-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-016-0838-1

Keywords

Navigation