Skip to main content

Advertisement

Log in

Experimental constraints on formation of hematite in olivine at high pressures and temperatures

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Iron-rich oxides, such as magnetite or hematite, have been reported in olivine grains in many orogenic garnet peridotites from continental collision zones. Whether these iron-rich minerals originate from dry oxidation, dehydrogenation-oxidation or exsolution from a precursor wadsleyite phase is debatable. This paper explores high-pressure and high-temperature experiments in a hydrous harzburgite system, by taking advantage of electron backscattered diffraction (EBSD) analyses, to examine the formation of hematite in olivine. Experimental results show that hematite can be formed within olivine grains at pressures >6 GPa and temperatures in the 1073–1473 K range. EBSD analysis suggests that hematite rods (not associated with clinopyroxene) and host olivine have the following crystallographic relations: \( \langle 0001 \rangle _{\text{Hem}} // [100]_{\text{Ol}} , \langle 10{-}10\rangle _{\text{Hem}} //[001]_{\text{Ol}} , \langle 11{-}20\rangle _{\text{Hem}} //[010]_{\text{Ol}} \), which are consistent with those observed in natural garnet peridotite from the Dabie–Sulu ultra-high-pressure (UHP) metamorphic terrane. It is postulated that both hydroxide (OH) and hydrogen (H+) ions have the potential to oxidize Fe2+ to Fe3+, followed by rapid dehydrogenation and slow Fe diffusion, thus forming hematite within the olivine grains. It is proposed that dehydrogenation-oxidation is the most likely formation mechanism of hematite inclusions within olivine, with the following two requirements: an ample amount of H2O and specific PT conditions (>6 GPa, at 1073 K). Such conditions are consistent with those calculated in natural garnet peridotites from the Dabie–Sulu UHP metamorphic terranes. The present study also indicates that hematite (or magnetite?) inclusions in olivine contain important clues about the tectonic evolution of UHP rocks in continental crust collision zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bromiley GD, Pawley AR (2003) The stability of antigorite in the systems MgO–SiO2–H2O (MSH) and MgO–Al2O3–SiO2–H2O (MASH): the effects of Al3+ substitution on high-pressure stability. Am Mineral 88(1):99–108

    Article  Google Scholar 

  • Cavazzoni C, Chiarotti GL, Scandolo S, Tosatti E, Bernasconi M, Parrinello M (1999) Superionic and metallic states of water and ammonia at giant planet conditions. Science 283(5398):44–46

    Article  Google Scholar 

  • Champness PE (1970) Nucleation and growth of iron oxides in olivines. Mineral Mag 37:790–800

    Article  Google Scholar 

  • Chopin C (1984) Coesite and pure pyrope in high-grade blueschists of the Western Alps: a first record and some consequences. Contrib Mineral Petrol 86(2):107–118

    Article  Google Scholar 

  • Churakov SV, Khisina NR, Urusov VS, Wright R (2003) First-principles study of (MgH2SiO4)·n(Mg2SiO4) hydrous olivine structures. I. Crystal structure modelling of hydrous olivine Hy-2a (MgH2SiO4)·3(Mg2SiO4). Phys Chem Miner 30:1–11

    Article  Google Scholar 

  • Dobrzhinetskaya L, Green HW, Wang S (1996) Alpe Arami: a peridotite massif from depths of more than 300 kilometers. Science 271(5257):1841–1845

    Article  Google Scholar 

  • Frost DJ, McCammon CA (2008) The redox state of Earth’s mantle. Annu Rev Earth Planet Sci 36(1):389–420

    Article  Google Scholar 

  • Fumagalli P, Poli S (2005) Experimentally determined phase relations in hydrous peridotites to 6·5 GPa and their consequences on the dynamics of subduction zones. J Petrol 46(3):555–578

    Article  Google Scholar 

  • Garth T, Rietbrock A (2014) Order of magnitude increase in subducted H2O due to hydrated normal faults within the Wadati-Benioff zone. Geology. doi:10.1130/G34730.1

    Google Scholar 

  • Goncharov AF, Goldman N, Fried LE, Crowhurst JC, Kuo IW, Mundy CJ, Zaug JM (2005) Dynamic Ionization of water under extreme conditions. Phys Rev Lett 94:125508

    Article  Google Scholar 

  • Griffin WL, O’Reilly SY, Ryan CG (1999) The composition and origin of sub-continental lithospheric mantle. In: Fei Y, Berka CM, Mysen BO (eds) Mantle petrology: field observations and experimentation. Geochemical Society, Houston, pp 13–45

    Google Scholar 

  • Hacker BR, Sharp T, Zhang RY, Liou JG, Hervig RL (1997) Determining the origin of ultrahigh-pressure lherzolites. Science 278(5338):702–707

    Article  Google Scholar 

  • Hacker BR, Abers GA, Peacock SM (2003) Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. J Geophys Res 108(B1):2029

    Article  Google Scholar 

  • Hall LJ, Brodie J, Wood BJ, Carroll MR (2004) Iron and water losses from hydrous basalts contained in Au80Pd20 capsules at high pressure and temperature. Mineral Mag 68(1):75–81

    Article  Google Scholar 

  • Hermann J, Gerald JDF, Malaspina N, Berry AJ, Scambelluri M (2007) OH-bearing planar defects in olivine produced by the breakdown of Ti-rich humite minerals from Dabie Shan (China). Contrib Mineral Petrol 153(4):417–428

    Article  Google Scholar 

  • Hwang SL, Yui TF, Chu HT, Shen P, Iizuka Y, Yang HY, Yang J, Xu Z (2008) Hematite and magnetite precipitates in olivine from the Sulu peridotite: a result of dehydrogenation-oxidation reaction of mantle olivine? Am Mineral 93(7):1051–1060

    Article  Google Scholar 

  • Ingrin J, Skogby H (2000) Hydrogen in nominally anhydrous upper-mantle minerals: concentration levels and implications. Eur J Mineral 12(3):543–570

    Article  Google Scholar 

  • Irifune T, Kubo N, Isshiki M, Yamasaki Y (1998) Phase transformations in serpentine and transportation of water into the lower mantle. Geophys Res Lett 25(2):203–206

    Article  Google Scholar 

  • Jin ZM, Jin SY, Gao S, Zhao WX (1998) Is the depth of formation of ultrahigh-P rock from the Dabie Mountains limited to 100–150 km?—Discovery of Ti–Cr magnetite needle and its significance for dynamics. Chin Sci Bull 43:767–771

    Google Scholar 

  • Katsura T, Yamada H, Nishikawa O, Song M, Kubo A, Shinmei T, Yokoshi S, Aizawa Y, Yoshino T, Walter MJ, Ito E, Funakoshi K (2004) Olivine-wadsleyite transition in the system (Mg, Fe)2SiO4. J Geophys Res 109(B2):B02209

    Google Scholar 

  • Kawamoto T, Hirose K (1994) Au-Pd sample containers for melting experiments on iron and water bearing systems. Eur J Mineral 6:381–385

    Article  Google Scholar 

  • Kelley KA, Cottrell E (2009) Water and the oxidation state of subduction zone magmas. Science 325(5940):605–607

    Article  Google Scholar 

  • Khisina NR, Wirth R (2002) Hydrous olivine (Mg1−yFe2+y)2−xVxSiO4H2x—a new DHMS phase of variable composition observed as nanometer-sized precipitations in mantle olivine. Phys Chem Miner 29:98–111

    Article  Google Scholar 

  • Khisina NR, Wirth R, Andrut M, Ukhanov AV (2001) Extrinsic and intrinsic mode of hydrogen occurrence in natural olivines: fTIR and TEM investigation. Phys Chem Miner 28:291–301

    Article  Google Scholar 

  • Khisina NR, Wirth R, Abart R, Rhede D, Heinrich W (2013) Oriented chromite–diopside symplectic inclusions in olivine from lunar regolith delivered by “Luna-24” mission. Geochim Cosmochim Acta 104:84–98

    Article  Google Scholar 

  • Knapp N, Woodland AB, Klimm K (2013) Experimental constraints in the CMAS system on the Ca-Eskola content of eclogitic clinopyroxene. Eur J Mineral 25(4):579–596

    Article  Google Scholar 

  • Kohlstedt DL, Sande JBV (1975) An electron microscopy study of naturally occurring oxidation produced precipitates in iron-bearing olivines. Contrib Mineral Petrol 53(1):13–24

    Article  Google Scholar 

  • Komabayashi T, Hirose K, Ki Funakoshi, Takafuji N (2005) Stability of phase A in antigorite (serpentine) composition determined by in situ X-ray pressure observations. Phys Earth Planet Inter 151(3–4):276–289

    Article  Google Scholar 

  • Lathe C, Koch-Muller M, Wirth R, Van Westrenen W, Mueller HJ, Schilling F, Lauterjung J (2005) The influence of OH in coesite on the kinetics of the coesite-quartz phase transition. Am Mineral 90(1):36–43

    Article  Google Scholar 

  • Lin J, Schwegler E, Yoo CS (2006) Phase diagram and physical properties of H2O at high pressures and temperatures: application to planetary interiors. In: Jacobsen SD, van der Lee S (eds) Earth’s deep water cycle, vol 168., Geophys Monogr SerAGU, Washington, pp 159–169

    Chapter  Google Scholar 

  • Liou JG, Zhang RY, Ernst WG (2007) Very high-pressure orogenic garnet peridotites. Proc Natl Acad Sci 104:9116–9121

    Article  Google Scholar 

  • Litasov K, Ohtani E (2003) Stability of various hydrous phases in CMAS pyrolite-H2O system up to 25 GPa. Phys Chem Miner 30(3):147–156

    Article  Google Scholar 

  • Litasov KD, Shatskiy A, Ohtani E (2014) Melting and subsolidus phase relations in peridotite and eclogite systems with reduced COH fluid at 3–16 GPa. Earth Planet Sci Lett 391:87–99

    Article  Google Scholar 

  • Liu X, Jin Z, Qu J, Wang L (2005) Exsolution of ilmenite and Cr-Ti magnetite from olivine of garnet-wehrlite. Sci China Ser D Earth Sci 48(9):1368–1376

    Article  Google Scholar 

  • McCammon CA (2005) Mantle oxidation state and oxygen fugacity: constraints on mantle chemistry, structure, and dynamics. In: van der Hilst R et al (eds) Earth’s deep mantle: structure, composition and evolution., Geophys Monogr SerAGU, Washington, pp 219–240

    Chapter  Google Scholar 

  • McCammon CA, Frost DJ, Smyth JR, Laustsen HMS, Kawamoto T, Ross NL, van Aken PA (2004) Oxidation state of iron in hydrous mantle phases: implications for subduction and mantle oxygen fugacity. Phys Earth Planet Inter 143–144:157–169

    Article  Google Scholar 

  • Mosenfelder JL, Schertl HP, Smyth JR, Liou JG (2005) Factors in the preservation of coesite: the importance of fluid infiltration. Am Mineral 90(5–6):779–789

    Article  Google Scholar 

  • Ohtani E, Litasov K, Hosoya T, Kubo T, Kondo T (2004) Water transport into the deep mantle and formation of a hydrous transition zone. Phys Earth Planet Inter 143–144:255–269

    Article  Google Scholar 

  • Peacock SM (2001) Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology 29(4):299–302

    Article  Google Scholar 

  • Risold AC, Trommsdorff V, Grobéty B (2001) Genesis of ilmenite rods and palisades along humite-type defects in olivine from Alpe Arami. Contrib Mineral Petrol 140(5):619–628

    Article  Google Scholar 

  • Savage B (2012) Seismic constraints on the water flux delivered to the deep Earth by subduction. Geology 40(3):235–238

    Article  Google Scholar 

  • Schertl HP, O’Brien PJ (2013) Continental crust at mantle depths: key minerals and microstructures. Elements 9(4):261–266

    Article  Google Scholar 

  • Schmidt MW, Poli S (2014) Devolatilization during subduction. In: Hooland HD, Turekian KK (eds) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 669–701

    Chapter  Google Scholar 

  • Schwegler E, Galli G, Gygi F, Hood RO (2001) Dissociation of water under pressure. Phys Rev Lett 87:265501

    Article  Google Scholar 

  • Smith DC (1984) Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature 310(5979):641–644

    Article  Google Scholar 

  • Sokol AG, Palyanov YN, Kupriyanov IN, Litasov KD, Polovinka MP (2010) Effect of oxygen fugacity on the H2O storage capacity of forsterite in the carbon-saturated systems. Geochim Cosmochim Acta 74(16):4793–4806

    Article  Google Scholar 

  • Spengler D, van Roermund HLM, Drury MR, Ottolini L, Mason PRD, Davies GR (2006) Deep origin and hot melting of an Archaean orogenic peridotite massif in Norway. Nature 440:913–917

    Article  Google Scholar 

  • Suzuki A, Ohtani E, Morishima H, Kubo T, Kanbe Y, Kondo T, Okada T, Terasaki H, Kato T, Kikegawa T (2000) In situ determination of the phase boundary between wadsleyite and ringwoodite in Mg2SiO4. Geophys Res Lett 27(6):803–806

    Article  Google Scholar 

  • Ulmer P, Trommsdorff V (1995) Serpentine stability to mantle depths and subduction-related magmatism. Science 268(5212):858–861

    Article  Google Scholar 

  • Woodland AB, Angel RJ (2000) Phase relations in the system fayalite–magnetite at high pressures and temperatures. Contrib Mineral Petrol 139(6):734–747

    Article  Google Scholar 

  • Wright K, Catlow CRA (1994) A computer simulation study of (OH) defects in olivine. Phys Chem Miner 20:515–518

    Google Scholar 

  • Wu Y, Wang Y, Zhang Y, Jin Z, Wang C, Zhou C (2012) An experimental study of phase transformations in olivine under pressure and temperature conditions corresponding to the mantle transition zone. Chin Sci Bull 57(8):894–901

    Article  Google Scholar 

  • Wunder B, Schreyer W (1997) Antigorite: high-pressure stability in the system MgO–SiO2–H2O (MSH). Lithos 41(1–3):213–227

    Article  Google Scholar 

  • Yang JJ (2006) Ca-rich garnet–clinopyroxene rocks at Hujialin in the Su–Lu terrane (Eastern China): deeply subducted arc cumulates? J Petrol 47(5):965–990

    Article  Google Scholar 

  • Ye K, Cong B, Ye D (2000) The possible subduction of continental material to depths greater than 200 km. Nature 407(6805):734–736

    Article  Google Scholar 

  • Zhang Z, Duan Z (2005) Prediction of the PVT properties of water over wide range of temperatures and pressures from molecular dynamics simulation. Phys Earth Planet Inter 149(3–4):335–354

    Article  Google Scholar 

  • Zhang RY, Liou JG (1999) Exsolution Lamellae in Minerals from ultrahigh-pressure rocks. Int Geol Rev 41(11):981–993

    Article  Google Scholar 

  • Zhang J, Li B, Utsumi W, Liebermann RC (1996) In situ X-ray observations of the coesite-stishovite transition: reversed phase boundary and kinetics. Phys Chem Miner 23(1):1–10

    Article  Google Scholar 

  • Zhang RY, Shu JF, Mao HK, Liou JG (1999) Magnetite lamellae in olivine and clinohumite from Dabie UHP ultramafic rocks, central China. Am Mineral 84(4):564–569

    Google Scholar 

  • Zhang RY, Liou JG, Yang JS, Yui TF (2000) Petrochemical constraints for dual origin of garnet peridotites from the Dabie–Sulu UHP terrane, eastern-central China. J Metamorph Geol 18(2):149–166

    Article  Google Scholar 

  • Zhang RY, Liou JG, Yang JS, Liu L, Jahn BM (2004) Garnet peridotites in UHP mountain belts of China. Int Geol Rev 46:981–1004

    Article  Google Scholar 

  • Zhang RY, Liou JG, Ernst WG (2009) The Dabie–Sulu continental collision zone: a comprehensive review. Gondwana Res 16(1):1–26

    Article  Google Scholar 

  • Zhang Y, Wang Y, Wu Y, Bina CR, Jin Z, Dong S (2013) Phase transitions of harzburgite and buckled slab under eastern China. Geochem Geophys Geosyst 14(4):1182–1199

    Article  Google Scholar 

  • Zhao S, Nee P, Green HW, Dobrzhinetskaya LF (2011) Ca-Eskola component in clinopyroxene: experimental studies at high pressures and high temperatures in multianvil apparatus. Earth Planet Sci Lett 307(3–4):517–524

    Article  Google Scholar 

Download references

Acknowledgments

We thank Prof. Junfeng Zhang, Prof. Yixian Xu and Dr. Penglei Liu for useful discussions. We are grateful to Daniel Harlov and Maria D. Ruiz Cruz for their constructive comments and suggestions. We also thank Editor Catherine McCammon for constructive suggestions. We are grateful to Prof. Mouchun He for help with micro-Raman analysis. We acknowledge use of the EPMA in the Key Laboratory of Submarine Geosciences, State Oceanic Administration. This research was supported by the National Natural Sciences Foundation of China (41402035), the Fundamental Research Funds for the Central Universities, the China University of Geosciences (Wuhan) (CUGL140826) and the China Postdoctoral Science Foundation (2013M540615).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, C., Wu, Y. et al. Experimental constraints on formation of hematite in olivine at high pressures and temperatures. Phys Chem Minerals 42, 761–771 (2015). https://doi.org/10.1007/s00269-015-0760-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-015-0760-y

Keywords

Navigation