Skip to main content
Log in

Electron paramagnetic resonance spectroscopy of Fe3+ ions in amethyst: thermodynamic potentials and magnetic susceptibility

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Single-crystal and powder electron paramagnetic resonance (EPR) spectroscopic studies of natural amethyst quartz, before and after isochronal annealing between 573 and 1,173 K, have been made from 90 to 294 K. Single-crystal EPR spectra confirm the presence of two substitutional Fe3+ centers. Powder EPR spectra are characterized by two broad resonance signals at g = ~10.8 and 4.0 and a sharp signal at g = 2.002. The sharp signal is readily attributed to the well-established oxygen vacancy electron center E 1′. However, the two broad signals do not correspond to any known Fe3+ centers in the quartz lattice, but are most likely attributable to Fe3+ clusters on surfaces. The absolute numbers of spins of the Fe3+ species at g = ~10.8 have been calculated from powder EPR spectra measured at temperatures from 90 to 294 K. These results have been used to extract thermodynamic potentials, including Gibbs energy of activation ΔG, activation energy E a, entropy of activation ΔS and enthalpy of activation ΔH for the Fe3+ species in amethyst. In addition, magnetic susceptibilities (χ) have been calculated from EPR data at different temperatures. A linear relationship between magnetic susceptibility and temperature is consistent with the Curie–Weiss law. Knowledge about the stability and properties of Fe3+ species on the surfaces of quartz is important to better understanding of the reactivity, bioavailability and heath effects of iron in silica particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Balitsky VS, Machina IB, Marin AA, Shigley JE, Rossman GR, Lu T (2000) Industrial growth, morphology and some properties of bi-colored amethyst citrine quartz (ametrine). J Crystal Growth 212:255–260

    Article  Google Scholar 

  • Barry TG, McNamara P, Moore WJ (1965) Paramagnetic resonance and optical properties of amethyst. J Chem Phys 7:2599–2606

    Article  Google Scholar 

  • Borgheresi M, Di Benedetto F, Caneschi A, Pratesi G, Romanelli M, Sorace L (2007) An EPR and SQUID magnetometry study of bornite. Phys Chem Miner 34:609–619

    Article  Google Scholar 

  • Bramley R, McCool MB (1976) EPR of Fe3+ pairs in α-Al2O3. J Phys C Solid State Phys 9:1793–1806

    Article  Google Scholar 

  • Carbonaro CM, Fiorentini V, Berardini F (2001) Proof of the thermodynamical stability of the E’ center in SiO2. Phys Rev Lett 86:3064–3067

    Article  Google Scholar 

  • Chakradhar RPS, Murali A, Rao JL (1998) Electron paramagnetic resonance and optical absorption studies of Fe(III) ions in alkali barium borate glasses. Opt Mater 10:109–116

    Article  Google Scholar 

  • Chakradhar RPS, SivaRamaiah G, Rao JL, Gopal NO (2005) Fe3+ ions in alkali lead tetraborate glasses—an electron paramagnetic resonance and optical study. Spectrochem Acta Part A 62:51–57

    Article  Google Scholar 

  • Cohen AJ (1985) Amethyst color in quartz, the result of radiation protection involving iron. Am Mineral 70:1180–1185

    Google Scholar 

  • Cortezão SU, Pontuschka WM, Da Rocha MSF, Blak AR (2003) Depolarisation currents (TSDC) and paramagnetic resonance (EPR) of iron in amethyst. J Phys Chem Solids 64:1151–1155

    Article  Google Scholar 

  • Cox RT (1976) EPR of an S = 2 centre in amethyst quartz and its possible identification as the d4 ion Fe4+. J Phys C Solid State Phys 9:3355–3361

    Article  Google Scholar 

  • Cox RT (1977) Optical absorption of the d4 ion Fe4+ in pleochroic amethyst quartz. J Phys C Solid State Phys 10:4631–4643

    Article  Google Scholar 

  • Cressey G, Henderson CMB, van der Laan G (1993) Use of L-edge X-ray absorption spectroscopy to characterize multiple valence states of 3d transition metals; a new probe for mineralogical and geochemical research. Phys Chem Miner 20:111–119

    Article  Google Scholar 

  • Dedushenko SK, Makhina IB, Marin AA, Mukhanov VA, Perfiliev YD (2004) What oxidation state of iron determines the amethyst colour? Hyperfine Interact 156(157):417–422

    Article  Google Scholar 

  • Di Benedetto F, Innocenti M, Tesi S, Romanelli M, D’Acapito F, Fornaciai G, Montegrossi G, Pardi LA (2010) A Fe K-edge XAS study of amethyst. Phys Chem Miner 37:283–289

    Article  Google Scholar 

  • Donaldson K, Borm PJA (1998) The quartz hazard: a variable entity. Ann Occup Hyg 42:287–294

    Google Scholar 

  • Feigl FJ, Flower BW, Yip KL (1974) Oxygen vacancy model in the E’ center in SiO2. Solid State Commun 14:225–229

    Article  Google Scholar 

  • Fubini B, Fenogli I (2007) Toxic potential of mineral dusts. Elements 3:407–416

    Article  Google Scholar 

  • Gaite JM, Ermakoff P, Allard TH, Muller JP (1997) Paramagnetic Fe3+: a sensitive probe for disorder in kaolinite. Clays Clay Miner 45:496–505

    Article  Google Scholar 

  • Golding RM, Kestigian M, Tennant CW (1978) EPR of high-spin Fe3+ in calcium tungstate. J Phys C Solid State Phys 11:5041–5049

    Article  Google Scholar 

  • Gopal NO, Narasimhulu KV, Lakshmana Rao JL (2004) Optical absorption, EPR, infrared and Raman spectral studies of clinochlore mineral. J Phys Chem Solids 65:1887–1893

    Article  Google Scholar 

  • Halliburton LE, Hantehzadeh MR, Minge J, Mombourquette MJ, Weil JA (1989) EPR study of Fe3+ in alpha quartz: a reexamination of the lithium-compensated center. Phys Rev B40:2076–2081

    Google Scholar 

  • Han CS, Choh SH (1989) EPR study of iron centers in natural amethyst. J Korean Phys Soc 22:241–252

    Google Scholar 

  • Hemantha Kumar GN, Parthasarathy G, Chakradhar RPS, Rao JL, Ratnakaram YC (2010) Temperature dependence on the electron paramagnetic resonance spectra of natural jasper from Taroko Gorge (Taiwan). Phys Chem Miner 37:201–208

    Article  Google Scholar 

  • Hofmeister AM, Rossman GR (1984) Determination of Fe3+ and Fe2+ concentrations in feldspar by optical absorption and EPR spectroscopy. Phys Chem Miner 11:213–224

    Article  Google Scholar 

  • Hovis GL (1988) Enthalpies and volumes related to K–Na mixing and Al–Si order/disorder in alkali feldspars. J Petrol 29(4):731–763

    Google Scholar 

  • Hrouda F (1986) The effect of quartz on the magnetic anisotropy of quartzite. Studia Geophys Geodaet 30:39–45

    Article  Google Scholar 

  • Hutton DR, Troup DJ (1966) Paramagnetic resonance centres in amethyst and citrine quartz. Nature 211:621

    Article  Google Scholar 

  • Jani MG, Bossoli RB, Halliburton LE (1983) Further characterization of the E1’ center in crystalline SiO2. Phys Rev B27:2285–2293

    Google Scholar 

  • Lehmann G, Bambauer H (1973) Quartz crystals and their colors. Angew Chem 85:281–289

    Article  Google Scholar 

  • Lehmann G, Moore WJ (1966) Color center in amethyst quartz. Science 152:1061–1062

    Article  Google Scholar 

  • Matarrese LM, Weil JA, Peterson RL (1969) EPR spectrum of Fe3+ in synthetic brown quartz. J Chem Phys 50:2350–2360

    Article  Google Scholar 

  • Minge J, Weil JA, McGavin DG (1989) EPR study of Fe3+ in α-quartz: characterization of a new type of cation-compensated center. Phys Rev B 40:6490

    Article  Google Scholar 

  • Minge J, Mombourquette MJ, Weil JA (1990) EPR study of Fe3+ in α-quartz: the sodium-compensated center. Phys Rev B42:33–36

    Google Scholar 

  • Mombourquette MJ, Tennant WC, Weil JA (1986) EPR study of Fe3+ in α-quartz: a reexamination of the so-called I center. J Chem Phys 86:68–79

    Article  Google Scholar 

  • Murali A, Rao JL (1999) Spectroscopic investigations on Cu(II) ions doped in alkali lead borotellurite glasses. J Phys Condens Matter 11:7921–7935

    Article  Google Scholar 

  • Polikreti K, Maniatis Y (2004) Distribution changes of Mn2+ and Fe3+ on weathered marble surfaces measured by EPR spectroscopy. Atmos Environ 38:3617–3624

    Article  Google Scholar 

  • Rager H, Schneider H (1986) EPR study of Fe3+ centers in crystobalite and tridymite. Am Mineral 71:105–110

    Google Scholar 

  • Samarth N, Furdyna JK (1988) A proposed interpretation of the EPR linewidth in diluted magnetic semiconductors. Solid State Commun 65:801–804

    Article  Google Scholar 

  • Santillan-Medrano JM, Bohn Hinrich L (1972) Measurements of the standard entropy of formation of clay minerals. Soil Sci Soc Am J 36:835–838

    Article  Google Scholar 

  • Schofield PF, Henderson CMB, Cressey G, van der Laan G (1995) 2p X-ray absorption spectroscopy in the earth sciences. J Synchrotron Radiat 2:93–98

    Article  Google Scholar 

  • Thompson AB (1974) Gibbs energy of aluminous minerals. Contrib Mineral Petrol 48:123–136

    Article  Google Scholar 

  • Weil JA (1984) A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz. Phys Chem Miner 10:149–165

    Article  Google Scholar 

  • Weil JA, Bolton JR (2007) Electron paramagnetic resonance: elementary theory and practical applications. Wiley, New York

    Google Scholar 

  • Yoo SJ, Hu Z, Goh C, Bominaar EL, Holm RH, Munck E (1997) Determination of the exchange-coupling constant of an Fe3+–Fe3+ pair in a cubane-type iron–sulfur cluster. J Am Chem Soc 119:8732–8733

    Article  Google Scholar 

  • Zhang X, Guo H, Chi N, Wang SC, Yang NL, Akins DL (2006) Self aligned magnetic dipole moments of Fe2O3 formed within sol–gel matrix. Mater Chem Phys 98:207–211

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr Milan Rieder and the two anonymous referees for incisive criticisms and helpful suggestions, Dr KV Narasimhulu and Prof. JL Rao for helpful discussions, Dr Satya Singh for provision of CuSO4·5H2O, and the Natural Science and Engineering Research Council (NSERC) of Canada for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanming Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

SivaRamaiah, G., Lin, J. & Pan, Y. Electron paramagnetic resonance spectroscopy of Fe3+ ions in amethyst: thermodynamic potentials and magnetic susceptibility. Phys Chem Minerals 38, 159–167 (2011). https://doi.org/10.1007/s00269-010-0391-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-010-0391-2

Keywords

Navigation