Skip to main content

Advertisement

Log in

Systematic study of hydrogen incorporation into Fe-free wadsleyite

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The H2O content of wadsleyite were measured in a wide pressure (13–20 GPa) and temperature range (1,200–1,900°C) using FTIR method. We confirmed significant decrease of the H2O content of wadsleyite with increasing temperature and reported first systematic data for temperature interval of 1,400–1,900°C. Wadsleyite contains 0.37–0.55 wt% H2O at 1,600°C, which may be close to its water storage capacity along average mantle geotherm in the transition zone. Accordingly, water storage capacity of the average mantle in the transition zone may be estimated as 0.2–0.3 wt% H2O. The H2O contents of wadsleyite at 1,800–1,900°C are 0.22–0.39 wt%, indicating that it can store significant amount of water even under the hot mantle environments. Temperature dependence of the H2O content of wadsleyite can be described by exponential equation \( C_{{{\text{H}}_{2} {\text{O}}}} = 6 3 7.0 7 {\text{e}}^{ - 0.00 4 8T} , \) where T is in °C. This equation is valid for temperature range 1,200–2,100°C with the coefficient of determination R 2 = 0.954. Temperature dependence of H2O partition coefficient between wadsleyite and forsterite (D wd/fo) is complex. According to our data apparent Dwd/fo decreases with increasing temperature from D wd/fo = 4–5 at 1,200°C, reaches a minimum of D wd/fo = 2.0 at 1,400–1,500°C, and then again increases to D wd/fo = 4–6 at 1,700–1,900°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bell DR, Rossman GR (1992) Water in the Earth’s mantle: role of nominally anhydrous minerals. Science 255:1392–1396

    Article  Google Scholar 

  • Bell D, Rossman G, Maldener J, Endisch D, Rauch F (2003) Hydroxide in olivine: a quantitative determination of the absolute amount and calibration of the IR spectrum. J Geophys Res 108:2105. doi:10.1029/2001JB000679

    Article  Google Scholar 

  • Bezmen NI, Gorbachev PN, Shalynin AI, Asif M, Naldrett AJ (2008) Solubility of platinum and palladium in silicate melts under high water pressure as a function of redox conditions. Petrology 16:161–176

    Google Scholar 

  • Bina CR, Stein S, Marton FC, Van Ark EM (2001) Implications of slab mineralogy for subduction dynamics. Phys Earth Planet Inter 127:51–66

    Article  Google Scholar 

  • Bolfan-Casanova N, Keppler H, Rubie DC (2000) Water partitioning between nominally anhydrous minerals in the MgO–SiO2–H2O system up to 24 GPa: implications for the distribution of water in the Earths mantle. Earth Planet Sci Lett 182:209–221

    Article  Google Scholar 

  • Chen J, Inoue T, Yurimoto H, Weidner DJ (2002) Effect of water on olivine–wadsleyite phase boundary in the (Mg,Fe)2SiO4 system. Geophys Res Lett 29. doi:10.1029/2001GL014429

  • Cline HE, Anthony TR (1971) The thermomigration of liquid droplets through grain boundaries in solids. Acta Metall 19:491–495

    Article  Google Scholar 

  • Demouchy S, Deloule E, Frost DJ, Keppler H (2005) Pressure and temperature-dependence of water solubility in Fe-free wadsleyite. Am Miner 90:1084–1091

    Article  Google Scholar 

  • Fei Y, Van Orman J, Li L, van Westrenen W, Sanloup C, Minarik W et al (2004) Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. J Geophys Res 109:B02305. doi:10.1029/2003JB002562

    Article  Google Scholar 

  • Frost DJ (2003) The structure and sharpness of (Mg, Fe)2SiO4 phase transformations in the transition zone. Earth Planet Sci Lett 216:313–328

    Article  Google Scholar 

  • Frost DJ, Dolejš D (2007) Experimental determination of the effect of H2O on the 410-km seismic discontinuity. Earth Planet Sci Lett 256:182–195

    Article  Google Scholar 

  • Hirschmann MM, Aubaud C, Withers AC (2005) Storage capacity of H2O in nominally anhydrous minerals in the upper mantle. Earth Planet Sci Lett 236:167–181

    Article  Google Scholar 

  • Hirschmann MM, Withers AC, Aubaud C (2006) Petrologic structure of a hydrous 410 km discontinuity. In: Jacobsen SD, van der Lee S (eds) Earth deep water cycle. AGU Geophys Monogr 168: 277–287

  • Hirschmann MM, Tenner T, Aubaud C, Withers AC (2009) Dehydration melting of nominally anhydrous mantle: The primacy of partitioning. Phys Earth Planet Inter 176:54–68

    Article  Google Scholar 

  • Inoue T (1994) Effect of water on melting phase relations and melt composition in the system Mg2SiO4–MgSiO3–H2O up to 15 GPa. Phys Earth Planet Inter 85:237–263

    Article  Google Scholar 

  • Inoue T, Yurimoto H, Kudoh Y (1995) Hydrous modified spinel, Mg1.75SiH0.5O4: a new water reservoir in the mantle transition region. Geophys Res Lett 22:117–120

    Article  Google Scholar 

  • Inoue T, Irifune T, Higo Y, Sanehira T, Sueda Y, Yamada A, Shinmei T, Yamazaki D, Ando J, Funakoshi K, Utsumi W (2006) The phase boundary between wadsleyite and ringwoodite in Mg2SiO4 determined by in situ X-ray diffraction. Phys Chem Miner 33:106–114

    Article  Google Scholar 

  • Jacobsen SD, Smyth JR, Spetzler H, Holl CM, Frost DJ (2004) Sound velocities and elastic constants of iron-bearing hydrous ringwoodite. Phys Earth Planet Inter 143–144:47–56

    Article  Google Scholar 

  • Jacobsen SD, Demouchy S, Frost DJ, Boffa-Balaran T, Kung J (2005) A systematic study of OH in hydrous wadsleyite from polarized FTIR spectroscopy and single-crystal X-ray diffraction: Oxygen sites for hydrogen storage in Earth’s interior. Am Miner 90:61–70

    Article  Google Scholar 

  • Katsura T, Yamada H, Nishikawa O, Song M, Kubo A, Shinmei T et al (2004) Olivine–wadsleyite transition in the system (Mg, Fe)2SiO4. J Geophys Res 109:B02209. doi:10.1029/2003JB002438

    Article  Google Scholar 

  • Kawamoto T (2004) Hydrous phase stability and partial melt chemistry in H2O-saturated KLB-1 peridotite up to the uppermost lower mantle conditions. Phys Earth Planet Inter 143:387–395

    Article  Google Scholar 

  • Kawamoto T, Hervig RL, Holloway JR (1996) Experimental evidence for a hydrous transition zone in the early Earth’s mantle. Earth Planet Sci Lett 142:587–592

    Article  Google Scholar 

  • Keppler H, Bolfan-Casanova N (2006) Thermodynamics of water solubility and partitioning. Rev Miner Geochem 62:193–230

    Article  Google Scholar 

  • Kohlstedt DL, Keppler H, Rubie DC (1996) Solubility of water in the α, β, and γ phases of (Mg, Fe)2SiO4. Contr Miner Petrol 123:345–357

    Article  Google Scholar 

  • Kohn SC, Brooker RA, Frost DJ, Slesinger AE, Wood BJ (2002) Ordering of hydroxyl defects in hydrous wadsleyite (β-Mg2SiO4). Am Miner 87:293–301

    Google Scholar 

  • Libowitzky E, Rossman GR (1997) An IR absorption calibration for water in minerals. Am Miner 82:1111–1115

    Google Scholar 

  • Litasov KD, Ohtani E (2002) Phase relations and melt compositions in CMAS pyrolite–H2O system up to 25 GPa. Phys Earth Planet Inter 134:105–127

    Article  Google Scholar 

  • Litasov KD, Ohtani E (2003) Stability of various hydrous phases in CMAS pyrolite–H2O system up to 25 GPa. Phys Chem Miner 30:147–156

    Article  Google Scholar 

  • Litasov KD, Ohtani E, Langenhorst F, Yurimoto H, Kubo T, Kondo T (2003) Water solubility in Mg–perovskites and water storage capacity in the lower mantle. Earth Planet Sci Lett 211:189–203

    Article  Google Scholar 

  • Litasov KD, Ohtani E, Sano A (2006) Influence of water on major phase transitions in the Earth’s mantle. In: Jacobsen SD, van der Lee S (eds) Earth deep water cycle. AGU Geophys Monogr 168: 95–112

  • Litasov KD, Shatsky AF, Katsura T, Ohtani E (2009) Water solubility in forsterite at 7.5–14.0 GPa. Doklady Earth Sci 425(4):522–526

    Google Scholar 

  • Mibe K, Kanzaki M, Kawamoto T, Matsukage KN, Fei Y, Ono S (2007) Second critical endpoint in the peridotite–H2O system. J Geophys Res 112: B03201. doi:10.1029/2005JB004125

  • Ohtani E, Mizobata H, Yurimoto H (2000) Stability of dense hydrous magnesium silicate phases in the system Mg2SiO4–H2O and MgSiO3–H2O at pressures up to 27 GPa. Phys Chem Miner 27:533–544

    Article  Google Scholar 

  • Ohtani E, Toma M, Litasov K, Kubo T, Suzuki A (2001) Stability of dense hydrous magnesium silicate phases and water storage capacity in the transition zone and lower mantle. Phys Earth Planet Inter 124:105–117

    Article  Google Scholar 

  • Ohtani E, Litasov K, Hosoya T, Kubo T, Kondo T (2004) Water transport into the deep mantle and formation of a hydrous transition zone. Phys Earth Planet Inter 143–144:255–269

    Article  Google Scholar 

  • Paterson MS (1982) The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials. Bull Miner 105:20–29

    Google Scholar 

  • Patiño Douce AE, Beard JS (1994) H2O loss from hydrous melts during fluid-absent piston cylinder experiments. Am Miner 79:585–588

    Google Scholar 

  • Shatskiy A, Fukui H, Matsuzaki T, Yoneda A, Yamazaki D, Ito E, Katsura T (2007) Growth of large (1 mm) MgSiO3 perovskite single crystals: a thermal gradient method at ultra-high pressure. Am Miner 92:1744–1749

    Article  Google Scholar 

  • Shatskiy A, Litasov KD, Shinoda K, Matsuzaki T, Yamazaki D, Yoneda A, Ito E, Katsura T (2009) Single crystal growth of wadsleyite. Am Miner 94:1130–1136

    Article  Google Scholar 

  • Shatskiy A, Yamazaki D, Borzdov YM, Matsuzaki T, Litasov KD, Cooray T, Ferot A, Ito E, Katsura T (2010) Stishovite crystal growth-application to silicon self-diffusion measurements. Am Miner 95:135–143

    Article  Google Scholar 

  • Smyth JR (1987) β-Mg2SiO4: a potential host for water in the mantle? Am Miner 72:1051–1055

    Google Scholar 

  • Smyth JR, Frost DJ (2002) The effect of water on the 410-km discontinuity: an experimental study. Geophys Res Lett 29. doi:10.1029/2001GL014418

  • Smyth JR, Kawamoto T, Jacobsen SD, Swope RJ, Hervig RL, Holloway JR (1997) Crystal structure of monoclinic hydrous wadsleyite β-(Mg, Fe)2SiO4. Am Miner 82:270–275

    Google Scholar 

  • Smyth JR, Holl CM, Langenhorst F, Laustsen HMS, Rossman GR, Kleppe A et al (2005) Crystal chemistry of wadsleyite II and water in the Earth’s interior. Phys Chem Miner 31(2005):691–705

    Article  Google Scholar 

  • Smyth JR, Frost DJ, Nestola F, Holl CM, Bromiley G (2006) Olivine hydration in the deep upper mantle: effect of temperature and silica activity. Geophys Res Lett 33:L15301. doi:10.1029/2006GL026194

    Article  Google Scholar 

  • Sokol AG, Palyanov YN (2008) Diamond formation in the system MgO–SiO2–H2O–C at 7.5 GPa, 1600°C. Contrib Miner Petrol 155:33–43

    Article  Google Scholar 

  • Stalder R, Ulmer P, Thompson AB, Gunther D (2001) High pressure fluids in the system MgO–SiO2–H2O under upper mantle conditions. Contrib Miner Petrol 140:607–618

    Article  Google Scholar 

  • Suzuki A, Ohtani E, Morishima H, Kubo T, Kanbe Y, Kondo T et al (2000) In situ determination of the phase boundary between wadsleyite and ringwoodite in Mg2SiO4. Geophys Res Lett 27:803–806

    Article  Google Scholar 

  • Truckenbrodt J, Johannes W (1999) H2O loss during piston-cylinder experiments. Am Miner 84:1333–1335

    Google Scholar 

  • Van der Meijde M, Marone F, Giardini D, van der Lee S (2003) Seismic evidence for water deep in the Earth’s upper mantle. Science 300:1556–1558

    Article  Google Scholar 

  • Wood BJ (1995) The effect of H2O on the 410-kilometer seismic discontinuity. Science 268:74–76

    Article  Google Scholar 

  • Young TE, Green HW II, Hofmeister AM, Walker D (1993) Infrared spectroscopic investigation of hydroxyl in β-(Mg, Fe)2SiO4 and coexisting olivine: implications for mantle evolution and dynamics. Phys Chem Miner 19:409–422

    Article  Google Scholar 

Download references

Acknowledgments

We thank T. Kawamoto, T. Inoue, and M. Matsui for thorough reviews and suggestions and T. Bekker for technical corrections that improved the manuscript. This work was conducted as a part of the 21st Century Center-of-Excellence program at Tohoku and Okayama Universities and Global Center-of-Excellence program at Tohoku University. This work was also supported by the Russian Foundation for Basic Research (No. 09-05-00917).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin D. Litasov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Litasov, K.D., Shatskiy, A., Ohtani, E. et al. Systematic study of hydrogen incorporation into Fe-free wadsleyite. Phys Chem Minerals 38, 75–84 (2011). https://doi.org/10.1007/s00269-010-0382-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-010-0382-3

Keywords

Navigation