Skip to main content

Advertisement

Log in

Adsorption of H2O, NH3 and C6H6 on alkali metal cations in internal surface of mordenite and in external surface of smectite: a DFT study

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Adsorption of H2O, NH3 and C6H6 on H- and alkali metal-exchanged structures of mordenite and on corresponding cations on the smectite layer is investigated by ab initio density-functional calculations. Proton or an alkali metal cation compensates one Al/Si framework substitution and resides in the extra-framework position of zeolite or above flat smectite layer close to the Al/Si substitution. Pronounced similarities between zeolite and smectite are observed in changes of the adsorption energies and location of the external cation with changing character of the external cation. Calculated adsorption energies exhibit the following trend: E(NH3) > E(H2O) > E(C6H6). Because of looser contact with the framework, zeolitic cations are stronger adsorption centers and calculated adsorption energies of zeolites are by ~20–30% larger than cations of smectites. The highest adsorption energy is calculated for H-exchanged structures and down the group of alkali metal cations a decrease of the adsorption energy is observed. Deviations from the smooth variation of the adsorption energy are caused by: (1) formation of strong hydrogen bonds in H-exchanged structures, (2) adsorption induced migration of the external Li+ cation, and (3) steric hindrances of the flat C6H6 molecule adsorbed on the cation in the cage of zeolite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alberti A, Davoli P, Vezzalini G (1986) The crystal-structure refinement of a natural mordenite. Z Cristallogr 175:249–256

    Google Scholar 

  • Arean CO, Palomino GT, Garrone E, Nachtigallova D, Nachtigall P (2006) Combined theoretical and FTIR spectroscopic studies on hydrogen adsorption on the zeolites Na-FER and K-FER. J Phys Chem B 110:395–402. doi:10.1021/jp055190k

    Article  Google Scholar 

  • Arean CO, Delgado MR, Bauca CL, Vrbka L, Nachtigall P (2007) Carbon monoxide adsorption on low-silica zeolites—from single to dual and to multiple cation sites. Phys Chem Chem Phys 9:4657–4661. doi:10.1039/b709073k

    Article  Google Scholar 

  • Arean CO, Delgado MR, Frolich K, Bulanek R, Pulido A, Bibiloni GF, Nachtigall P (2008) Computational and Fourier transform infrared spectroscopic studies on carbon monoxide adsorption on the zeolites Na-ZSM-5 and K-ZSM-5. Evidence of dual sites. J Phys Chem C 112:4658–4666. doi:10.1021/jp7109934

    Article  Google Scholar 

  • Austen KF, White TOH, Marmier A, Parker SC, Artacho E, Dove MT (2008) Electrostatic versus polarization effects in the adsorption of aromatic molecules of varied polarity on an insulating hydrophobic surface. J Phys Condens Matter 20:1–7. doi:10.1088/0953-8984/20/03/035215

    Article  Google Scholar 

  • Benco L, Demuth T, Hafner J, Hutschka F (2000) Spontaneous proton transfer between O-sites in zeolites. Chem Phys Lett 324:373–380. doi:10.1016/S0009-2614(00)00628-X

    Article  Google Scholar 

  • Benco L, Demuth T, Hafner J, Hutschka F, Toulhoat H (2001) Adsorption of linear hydrocarbons in zeolites. A density-functional study. J Chem Phys 114:6327–6334. doi:10.1063/1.1355769

    Article  Google Scholar 

  • Benco L, Bucko T, Hafner J, Toulhoat H (2004) Ab initio simulation of Lewis sites in mordenite and a comparative study of the strength of active sites via CO adsorption. J Phys Chem B 108:13656–13666. doi:10.1021/jp048056t

    Article  Google Scholar 

  • Benco L, Bucko T, Hafner J, Toulhoat H (2005) A DFT study of adsorption and chemisorption of H2 on Lewis sites in mordenite. J Phys Chem B 109:22491–22501. doi:10.1021/jp0533729

    Article  Google Scholar 

  • Benco L, Bucko T, Grybos R, Hafner J, Sobalik Z, Dedecek J, Hrusak J (2007a) Adsorption of NO in Fe2+-exchanged ferrierite. A density functional study. J Phys Chem C 111:586–595. doi:10.1021/jp065618v

    Article  Google Scholar 

  • Benco L, Bucko T, Grybos R, Hafner J, Sobalik Z, Dedecek J, Sklenak S, Hrusak J (2007b) Multiple adsorption of NO on Fe2+ cations in the alpha- and beta-positions of ferrierite: an experimental and density functional study. J Phys Chem C 111:9393–9402. doi:10.1021/jp0724018

    Article  Google Scholar 

  • Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979. doi:10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  • Boulet P, Greenwell HC, Stackhouse S, Coveney PV (2006) Recent advances in understanding the structure and reactivity of clays using electronic structure calculations. J Mol Struct Theochem 762:33–48. doi:10.1016/j.theochem.2005.10.028

    Article  Google Scholar 

  • Bucko T, Hafner J, Benco L (2004) Adsorption and vibrational spectroscopy of ammonia at mordenite: ab initio study. J Chem Phys 120:10263–10277. doi:10.1063/1.1737302

    Article  Google Scholar 

  • Bucko T, Hafner J, Benco L (2005) Adsorption and vibrational spectroscopy of CO on mordenite: ab initio density-functional study. J Phys Chem B 109:7345–7357. doi:10.1021/jp050151u

    Article  Google Scholar 

  • Chatterjee A, Iwasaki T, Ebina T (2002) 2:1 Dioctahedral smectite as a selective sorbent for dioxins and furans: reactivity index study. J Phys Chem A 106:641–648. doi:10.1021/jp0127418

    Article  Google Scholar 

  • Demuth T, Hafner J, Benco L, Toulhoat H (2000) Structural and acidic properties of mordenite. An ab initio density-functional study. J Phys Chem B 104:4593–4607. doi:10.1021/jp993843p

    Article  Google Scholar 

  • Elanany M, Koyama M, Kubo M, Broclawik E, Miyamoto A (2005) Periodic density functional investigation of Lewis acid sites in zeolites: relative strength order as revealed from NH3 adsorption. Appl Surf Sci 246:96–101. doi:10.1016/j.apsusc.2004.10.052

    Article  Google Scholar 

  • Gournis D, Lappas A, Karakassides MA, Tobbens D, Moukarika A (2008) A neutron diffraction study of alkali cation migration in montmorillonites. Phys Chem Miner 35:49–58. doi:10.1007/s00269-007-0197-z

    Article  Google Scholar 

  • Greenwell HC, Jones W, Coveney PV, Stackhouse S (2006) On the application of computer simulation techniques to anionic and cationic clays: a materials chemistry perspective. J Mater Chem 16:708–723. doi:10.1039/b506932g

    Article  Google Scholar 

  • Grybos R, Hafner J, Benco L, Raybaud P (2008) Adsorption of NO on Pd-exchanged mordenite: Ab initio DFT modeling. J Phys Chem C 112:12349–12362. doi:10.1021/jp8009723

    Article  Google Scholar 

  • Guo BC, Purnell JW, Castleman AW Jr (1990) The clustering reactions of benzene with sodium and lead ions. Chem Phys Lett 168:155–160. doi:10.1016/0009-2614(90)85122-S

    Article  Google Scholar 

  • Hafner J, Benco L, Bucko T (2006) Acid-based catalysis in zeolites investigated by density-functional methods. Top Catal 37:41–54. doi:10.1007/s11244-006-0003-z

    Article  Google Scholar 

  • Kresse G, Furthmuller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50. doi:10.1016/0927-0256(96)00008-0

    Article  Google Scholar 

  • Kresse G, Hafner J (1993) Ab initio molecular dynamics for open-shell transition metals. Phys Rev B 48:13115–13118. doi:10.1103/PhysRevB.48.13115

    Article  Google Scholar 

  • Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775. doi:10.1103/PhysRevB.59.1758

    Article  Google Scholar 

  • Kubicki JD, Blake GA, Apitz SE (1997) Molecular orbital calculation for modeling acetate-aluminosilicate adsorption and dissolution reactions. Geochim Cosmochim Acta 61:1031–1046. doi:10.1016/S0016-7037(96)00399-7

    Article  Google Scholar 

  • Lee JH, Guggenheim S (1981) Single-crystal X-ray refinement of pyrophyllite-1Tc. Am Mineral 66:350–357

    Google Scholar 

  • Ma JC, Dougherty DA (1997) The cation–π interaction. Chem Rev 97:1303–1324. doi:10.1021/cr9603744

    Article  Google Scholar 

  • Mortier WJ (1988) Compilation of extra framework sites in zeolites. Butterworth, Guildford

    Google Scholar 

  • Nachtigall P, Garrone E, Palomino GT, Rodrigues Delgado M, Nachtigallova D, Arean CO (2006) FTIR spectroscopic and computational studies on hydrogen adsorption on the zeolite Li-FER. Phys Chem Chem Phys 8:2286–2292. doi:10.1039/b602362b

    Article  Google Scholar 

  • Nachtigall P, Delgado MR, Frolich K, Bulanek R, Palomino GT, Bauca CL, Arean CO (2007) Periodic density functional and FTIR spectroscopic studies on CO adsorption on the zeolite Na-FER. Microporous Mesoporous Mater 106:162–173. doi:10.1016/j.micromeso.2007.02.049

    Article  Google Scholar 

  • Nachtigallova D, Vrbka L, Bludsky O, Nachtigall P (2008) Interaction of acetonitrile with Na-zeolites: adsorption modes and vibrational dynamics in the zeolite channels and cavities. Phys Chem Chem Phys 10:4189–4198. doi:10.1039/b803024c

    Article  Google Scholar 

  • Ni D, Zhou DH, Zhong J (2008) Study of ethylene and benzene adsorption on Bronsted acid sites in MCM-22 zeolites by theoretical calculation. Chin J Catal 29:366–372

    Google Scholar 

  • Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many electron systems. Phys Rev B 23:5048–5079. doi:10.1103/PhysRevB.23.5048

    Article  Google Scholar 

  • Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249. doi:10.1103/PhysRevB.45.13244

    Article  Google Scholar 

  • Sauer J (1989) Molecular models in ab initio studies of solids and surfaces. From ionic crystals and semiconductors to catalysts. Chem Rev 89:199–255. doi:10.1021/cr00091a006

    Article  Google Scholar 

  • Sauer J, Ugliengo P, Garrone E, Saunders VR (1994) Theoretical study of van der Waals complexes at surface sites in comparison with the experiment. Chem Rev 94:2095–2160. doi:10.1021/cr00031a014

    Article  Google Scholar 

  • Tsipursky I, Drits VA (1984) The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction. Clay Miner 19:177–193. doi:10.1180/claymin.1984.019.2.05

    Article  Google Scholar 

  • Tunega D, Haberhauer G, Gerzabek MH, Lischka H (2002a) Theoretical study of adsorption sites on the (001) surfaces of 1:1 clay minerals. Langmuir 18:139–147. doi:10.1021/la010914e

    Article  Google Scholar 

  • Tunega D, Benco L, Haberhauer G, Gerzabek MH, Lischka H (2002b) Ab initio molecular dynamics study of adsorption sites on the (001) surfaces of 1:1 dioctahedral clay minerals. J Phys Chem B 106:11515–11525. doi:10.1021/jp026391g

    Article  Google Scholar 

  • Tunega D, Haberhauer G, Gerzabek MH, Lischka H (2004) Sorption of phenoxyacetic acid herbicides on the kaolinite mineral surface—an ab initio molecular dynamics simulation. Soil Sci 169:44–45. doi:10.1097/01.ss.0000112015.97541.f3

    Article  Google Scholar 

  • Tunega D, Goodman BA, Haberhauer G, Reichenauer TG, Gerzabek MH, Lischka H (2007) Ab initio calculations of relative stabilities of different structural arrangements in dioctahedral phyllosilicates. Clays Clay Miner 55:220–232. doi:10.1346/CCMN.2007.0550211

    Article  Google Scholar 

  • Van Santen RA, Kramer GJ (1995) Reactivity theory of zeolitic Bronsted acid sites. Chem Rev 95:637–660. doi:10.1021/cr00035a008

    Article  Google Scholar 

  • Yang T, Wen XD, Li J, Yang L (2006) Theoretical and experimental investigation on the structures of purified clay and acid-activated clay. Appl Surf Sci 252:6154–6161. doi:10.1016/j.apsusc.2005.06.033

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Austrian Science Fund under Project P17020-PHYS and by the German Research Foundation, priority program SPP 1315, Project GE 1676/1-1. We are grateful to Pascal Boulet and one anonymous reviewer for useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lubomir Benco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benco, L., Tunega, D. Adsorption of H2O, NH3 and C6H6 on alkali metal cations in internal surface of mordenite and in external surface of smectite: a DFT study. Phys Chem Minerals 36, 281–290 (2009). https://doi.org/10.1007/s00269-008-0276-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-008-0276-9

Keywords

Navigation