Skip to main content

Advertisement

Log in

Future Forest Cover Change Scenarios with Implications for Landslide Risk: An Example from Buzau Subcarpathians, Romania

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

This study focuses on future forest cover change in Buzau Subcarpathians, a landslide prone region in Romania. Past and current trends suggest that the area might expect a future increase in deforestation. We developed spatially explicit scenarios until 2040 to analyze the spatial pattern of future forest cover change and potential changes to landslide risk. First, we generated transition probability maps using the weights of evidence method, followed by a cellular automata allocation model. We performed expert interviews, to develop two future forest management scenarios. The Alternative scenario (ALT) was defined by 67 % more deforestation than the Business as Usual scenario (BAU). We integrated the simulated scenarios with a landslide susceptibility map. In both scenarios, most of deforestation was projected in areas where landslides are less likely to occur. Still, 483 (ALT) and 276 (BAU) ha of deforestation were projected on areas with a high-landslide occurrence likelihood. Thus, deforestation could lead to a local-scale increase in landslide risk, in particular near or adjacent to forestry roads. The parallel process of near 10 % forest expansion until 2040 was projected to occur mostly on areas with high-landslide susceptibility. On a regional scale, forest expansion could so result in improved slope stability. We modeled two additional scenarios with an implemented landslide risk policy, excluding high-risk zones. The reduction of deforestation on high-risk areas was achieved without a drastic decrease in the accessibility of the areas. Together with forest expansion, it could therefore be used as a risk reduction strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abildtrup J, Audsley E, Fekete-Farkas M et al (2006) Socio-economic scenario development for the assessment of climate change impacts on agricultural land use: a pairwise comparison approach. Environ Sci Policy 9:101–115. doi:10.1016/j.envsci.2005.11.002

    Article  Google Scholar 

  • Bălteanu D, Popovici EA (2010) Land use changes and land degradation in post-socialist Romania. Romanian J Geogr 54:95–105

    Google Scholar 

  • Barredo JI, Engelen G (2010) Land use scenario modeling for flood risk mitigation. Sustainability 2:1327–1344. doi:10.3390/su2051327

    Article  Google Scholar 

  • Baumann M, Kuemmerle T, Elbakidze M et al (2011) Patterns and drivers of post-socialist farmland abandonment in Western Ukraine. Land Use Policy 28:552–562. doi:10.1016/j.landusepol.2010.11.003

    Article  Google Scholar 

  • Baur B, Cremene C, Groza G et al (2006) Effects of abandonment of subalpine hay meadows on plant and invertebrate diversity in Transylvania, Romania. Biol Conserv 132:261–273. doi:10.1016/j.biocon.2006.04.018

    Article  Google Scholar 

  • Björnsen Gurung A, Bokwa A, Chełmicki W et al (2009) Global change research in the Carpathian mountain region. Mt Res Dev 29:282–288. doi:10.1659/mrd.1105

    Article  Google Scholar 

  • Bohateret VM (2012) Readjusting Romania’s forestry policy with a view to the year 2050. J Settl Spat Plan 1:27–42

    Google Scholar 

  • Bonham-Carter G (1994) Geographic information systems for geoscientists: modelling with GIS. Pergamon, Oxford, New York

    Google Scholar 

  • Bowen ME, McAlpine CA, House APN, Smith GC (2007) Regrowth forests on abandoned agricultural land: a review of their habitat values for recovering forest fauna. Biol Conserv 140:273–296. doi:10.1016/j.biocon.2007.08.012

    Article  Google Scholar 

  • Chemini C, Rizzoli A (2003) Land use change and biodiversity conservation in the Alps. J Mt Ecol 7:1–7

    Google Scholar 

  • Chitu Z, Istrate A, Adler M-J et al (2015) Comparative study of the methods for assessing landslide susceptibility in Ialomiţa Subcarpathians, Romania. In: Lollino G, Giordan D, Crosta GB et al (eds) Engineering Geology for Society Territory, vol 2. Springer International Publishing, pp 1205–1209

  • De Almeida CM, Batty M, Vieira Monteiro AM et al (2003) Stochastic cellular automata modeling of urban land use dynamics: empirical development and estimation. Comput Environ Urban Syst 27:481–509. doi:10.1016/S0198-9715(02)00042-X

    Article  Google Scholar 

  • Deshler D (1987) Techniques for generating futures perspectives. New Dir Adult Contin Educ 1987:79–92. doi:10.1002/ace.36719873609

    Article  Google Scholar 

  • EEA (1999) Environmental indicators: typology and overview. European Environment Agency, Copenhagen

    Google Scholar 

  • Engelen G, White R, Uljee I, Drazan P (1995) Using cellular automata for integrated modelling of socio-environmental systems. Environ Monit Assess 34:203–214. doi:10.1007/BF00546036

    Article  CAS  Google Scholar 

  • Falcucci A, Maiorano L, Ciucci P et al (2008) Land-cover change and the future of the Apennine brown bear: a perspective from the past. J Mammal 89:1502–1511. doi:10.1644/07-MAMM-A-229.1

    Article  Google Scholar 

  • FAO (1997) Issues and Opportunities in the Evolution of Private Forestry and Forestry Extension in Several Countries with Economies in Transition in Central and Eastern Europe. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Fischer M, Rudmann-Maurer K, Weyand A, Stöcklin J (2008) Agricultural land use and biodiversity in the Alps. Mt Res Dev 28:148–155. doi:10.1659/mrd.0964

    Article  Google Scholar 

  • Fuller DO, Hardiono M, Meijaard E (2011) Deforestation projections for carbon-rich peat swamp forests of Central Kalimantan, Indonesia. Environ Manag 48:436–447. doi:10.1007/s00267-011-9643-2

    Article  Google Scholar 

  • Ghimire S, Higaki D, Bhattarai T (2013) Estimation of soil erosion rates and eroded sediment in a degraded catchment of the Siwalik Hills, Nepal. Land 2:370–391. doi:10.3390/land2030370

    Article  Google Scholar 

  • Giupponi C, Ramanzin M, Sturaro E, Fuser S (2006) Climate and land use changes, biodiversity and agri-environmental measures in the Belluno province, Italy. Environ Sci Policy 9:163–173. doi:10.1016/j.envsci.2005.11.007

    Article  Google Scholar 

  • Giurgiu V (2004) Gestionarea durabilă a pădurilor României. Silvologie, vol III B. The Publishing House of the Romanian Academy, Bucharest

    Google Scholar 

  • Glade T (2003) Landslide occurrence as a response to land use change: a review of evidence from New Zealand. Catena 51:297–314. doi:10.1016/S0341-8162(02)00170-4

    Article  Google Scholar 

  • Glade T, Crozier MJ (2005) The nature of landslide hazard impact. In: Glade T, Anderson M, Crozier MJ (eds) Landslide hazard risk. Wiley, New York, pp 41–74

    Chapter  Google Scholar 

  • Griffiths P, Kuemmerle T, Kennedy RE et al (2012) Using annual time-series of Landsat images to assess the effects of forest restitution in post-socialist Romania. Remote Sens Environ 118:199–214. doi:10.1016/j.rse.2011.11.006

    Article  Google Scholar 

  • Griffiths P, Müller D, Kuemmerle T, Hostert P (2013) Agricultural land change in the Carpathian ecoregion after the breakdown of socialism and expansion of the European Union. Environ Res Lett 8:045024. doi:10.1088/1748-9326/8/4/045024

    Article  Google Scholar 

  • Griffiths P, Kuemmerle T, Baumann M et al (2014) Forest disturbances, forest recovery, and changes in forest types across the Carpathian ecoregion from 1985 to 2010 based on Landsat image composites. Remote Sens Environ 151:72–88. doi:10.1016/j.rse.2013.04.022

    Article  Google Scholar 

  • Gustafson EJ (1998) Quantifying landscape spatial pattern: what is the state of the art? Ecosystems 1:143–156. doi:10.1007/s100219900011

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Cardinali M et al (2005) Probabilistic landslide hazard assessment at the basin scale. Geomorphology 72:272–299. doi:10.1016/j.geomorph.2005.06.002

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Ardizzone F et al (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81:166–184. doi:10.1016/j.geomorph.2006.04.007

    Article  Google Scholar 

  • Hagen A (2003) Fuzzy set approach to assessing similarity of categorical maps. Int J Geogr Inf Sci 17:235–249. doi:10.1080/13658810210157822

    Article  Google Scholar 

  • Hessel R, Messing I, Liding C et al (2003) Soil erosion simulations of land use scenarios for a small Loess Plateau catchment. Catena 54:289–302. doi:10.1016/S0341-8162(03)00070-5

    Article  Google Scholar 

  • Hosseinali F, Alesheikh AA (2008) Weighting spatial information in GIS for copper mining exploration. Am J Appl Sci 5:1187–1198. doi:10.3844/ajassp.2008.1187.1198

    Article  Google Scholar 

  • Hussin H, Zumpano V, Sterlacchini S et al (2013) Comparing the predictive capability of landslide susceptibility models in three different study areas using the Weights of Evidence technique. EGU General Assembly Conference Abstracts, Vienna, p 12701

  • INSSE (2013) Romanian National Institute of Statistics Data Portal. http://www.insse.ro/. Accessed 11 May 2013

  • Ioras F, Abrudan I (2006) The Romanian forestry sector: privatisation facts. Int For Rev 8:361–367. doi:10.1505/ifor.8.3.361

    Google Scholar 

  • Kamusoko C, Wada Y, Furuya T et al (2013) Simulating future forest cover changes in Pakxeng district, Lao people’s democratic republic (PDR): implications for sustainable forest management. Land 2:1–19. doi:10.3390/land2010001

    Article  Google Scholar 

  • Knorn J, Kuemmerle T, Radeloff VC et al (2012) Forest restitution and protected area effectiveness in post-socialist Romania. Biol Conserv 146:204–212. doi:10.1016/j.biocon.2011.12.020

    Article  Google Scholar 

  • Körner C, Ohsawa M, Spehn E et al (2005) Mountain systems. In: Hassan R, Scholes R, Ash N (eds) Ecosystem and human well being: current state and trends: findings of the Conditions and Trends working group. Millennium Ecosystem Assessment, pp 681–716

  • Kozak J, Estreguil C, Troll M (2007a) Forest cover changes in the northern Carpathians in the 20th century: a slow transition. J Land Use Sci 2:127–146. doi:10.1080/17474230701218244

    Article  Google Scholar 

  • Kozak J, Estreguil C, Vogt P (2007b) Forest cover and pattern changes in the Carpathians over the last decades. Eur J For Res 126:77–90. doi:10.1007/s10342-006-0160-4

    Article  Google Scholar 

  • Kriegler E, O’Neill BC, Hallegatte S et al (2012) The need for and use of socio-economic scenarios for climate change analysis: a new approach based on shared socio-economic pathways. Glob Environ Change 22:807–822. doi:10.1016/j.gloenvcha.2012.05.005

    Article  Google Scholar 

  • Kuemmerle T, Müller D, Griffiths P, Rusu M (2008) Land use change in Southern Romania after the collapse of socialism. Reg Environ Change 9:1–12. doi:10.1007/s10113-008-0050-z

    Article  Google Scholar 

  • Lerman Z, Csaki C, Feder G (2004) Evolving farm structures and land use patterns in former socialist countries. Q J Int Agric 43:309–336

    Google Scholar 

  • MacDonald D, Crabtree J, Wiesinger G et al (2000) Agricultural abandonment in mountain areas of Europe: environmental consequences and policy response. J Environ Manag 59:47–69. doi:10.1006/jema.1999.0335

    Article  Google Scholar 

  • MADR (2012) Programul Naţional de Dezvoltare Rurală 2007-2013. National Rural Development Program. Ministry of Agriculture and Rural Development of Romania

  • Maeda EE, Clark BJF, Pellikka P, Siljander M (2010) Modelling agricultural expansion in Kenya’s Eastern Arc Mountains biodiversity hotspot. Agric Syst 103:609–620. doi:10.1016/j.agsy.2010.07.004

    Article  Google Scholar 

  • Maeda EE, de Almeida CM, de Carvalho Ximenes A et al (2011) Dynamic modeling of forest conversion: simulation of past and future scenarios of rural activities expansion in the fringes of the Xingu National Park, Brazilian Amazon. Int J Appl Earth Obs Geoinf 13:435–446. doi:10.1016/j.jag.2010.09.008

    Article  Google Scholar 

  • Malek Ž, Scolobig A, Schröter D (2014) Understanding land cover changes in the Italian Alps and Romanian Carpathians combining remote sensing and stakeholder interviews. Land 3:52–73. doi:10.3390/land3010052

    Article  Google Scholar 

  • Mas J-F, Soares Filho B, Pontius RG et al (2013) A suite of tools for ROC analysis of spatial models. ISPRS Int J Geo-Inf 2:869–887. doi:10.3390/ijgi2030869

    Article  Google Scholar 

  • Mather A (2001) The transition from deforestation to reforestation in Europe. In: Angelsen A, Kaimowitz D (eds) Agricultural technologies and tropical deforestation. CABI, Wallingford, p 422

    Google Scholar 

  • Mathijs E, Swinnen JFM (1998) The economics of agricultural decollectivization in East Central Europe and the former Soviet Union. Econ Dev Cult Change 47:1–26. doi:10.1086/452384

    Article  Google Scholar 

  • Micu M, Bălteanu D (2013) A deep-seated landslide dam in the Siriu Reservoir (Curvature Carpathians, Romania). Landslides 10:323–329. doi:10.1007/s10346-013-0382-8

    Article  Google Scholar 

  • Millenium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC

    Google Scholar 

  • Mitsova D, Shuster W, Wang X (2011) A cellular automata model of land cover change to integrate urban growth with open space conservation. Landsc Urban Plan 99:141–153. doi:10.1016/j.landurbplan.2010.10.001

    Article  Google Scholar 

  • Muică N, Turnock D (2008) A toponomical approach to the agrarian history of the Pătârlagele Depression (Buzău Subcarpathians, România). Hum Geogr 2:928–949

    Google Scholar 

  • Müller D, Kuemmerle T, Rusu M, Griffiths P (2009) Lost in transition: determinants of post-socialist cropland abandonment in Romania. J Land Use Sci 4:109–129. doi:10.1080/17474230802645881

    Article  Google Scholar 

  • Munteanu C, Kuemmerle T, Boltiziar M et al (2014) Forest and agricultural land change in the Carpathian region—a meta-analysis of long-term patterns and drivers of change. Land Use Policy 38:685–697. doi:10.1016/j.landusepol.2014.01.012

    Article  Google Scholar 

  • Navarro LM, Pereira HM (2012) Rewilding abandoned landscapes in Europe. Ecosystems 15:900–912. doi:10.1007/s10021-012-9558-7

    Article  Google Scholar 

  • Olofsson P, Foody GM, Stehman SV, Woodcock CE (2013) Making better use of accuracy data in land change studies: estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens Environ 129:122–131. doi:10.1016/j.rse.2012.10.031

    Article  Google Scholar 

  • Olsson EGA, Austrheim G, Grenne SN (2000) Landscape change patterns in mountains, land use and environmental diversity, Mid-Norway 1960–1993. Landsc Ecol 15:155–170. doi:10.1023/A:1008173628016

    Article  Google Scholar 

  • Papathoma-Köhle M, Glade T (2013) The role of vegetation cover change for landslide hazard and risk. In: Renaud FG, Sudmeier-Rieux K, Estrella M (eds) The role of ecosystems in disaster risk reduction. UNU-Press, Tokyo, pp 293–320

    Google Scholar 

  • Parlamentul României (1996) Law No. 26/1996. The Romanian Forest Code. Monitorul Oficial. Official Journal of Romania, Bucharest

  • Petschko H, Brenning A, Bell R et al (2014) Assessing the quality of landslide susceptibility maps—case study lower Austria. Nat Hazards Earth Syst Sci 14:95–118. doi:10.5194/nhess-14-95-2014

    Article  Google Scholar 

  • Phillips C, Marden M (2005) Reforestation schemes to manage regional landslide risk. In: Glade T, Anderson M, Crozier MJ (eds) Landslide hazard risk. Wiley, New York, pp 517–547

    Google Scholar 

  • Pontius RG Jr, Parmentier B (2014) Recommendations for using the relative operating characteristic (ROC). Landsc Ecol 29:367–382. doi:10.1007/s10980-013-9984-8

    Article  Google Scholar 

  • Pontius RG Jr, Schneider LC (2001) Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agric Ecosyst Environ 85:239–248. doi:10.1016/S0167-8809(01)00187-6

    Article  Google Scholar 

  • Pontius RG Jr, Boersma W, Castella J-C et al (2007a) Comparing the input, output, and validation maps for several models of land change. Ann Reg Sci 42:11–37. doi:10.1007/s00168-007-0138-2

    Article  Google Scholar 

  • Pontius RG Jr, Walker R, Yao-Kumah R et al (2007b) Accuracy assessment for a simulation model of Amazonian deforestation. Ann Assoc Am Geogr 97:677–695. doi:10.1111/j.1467-8306.2007.00577.x

    Article  Google Scholar 

  • Pontius RG Jr, Peethambaram S, Castella J-C (2011) Comparison of three maps at multiple resolutions: a case study of land change simulation in Cho Don district, Vietnam. Ann Assoc Am Geogr 101:45–62. doi:10.1080/00045608.2010.517742

    Article  Google Scholar 

  • Promper C, Puissant A, Malet J-P, Glade T (2014) Analysis of land cover changes in the past and the future as contribution to landslide risk scenarios. Appl Geogr 53:11–19. doi:10.1016/j.apgeog.2014.05.020

    Article  Google Scholar 

  • Quantum GIS Development Team (2013) Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project

  • Reichenbach P, Busca C, Mondini AC, Rossi M (2014) The Influence of land use change on landslide susceptibility zonation: the Briga catchment test site (Messina, Italy). Environ Manag. doi:10.1007/s00267-014-0357-0

    Google Scholar 

  • Reichenbach P, Busca C, Mondini AC, Rossi M (2015) Land use change scenarios and landslide susceptibility zonation: the Briga Catchment Test Area (Messina, Italy). In: Lollino G, Manconi A, Clague J et al (eds) Engineering Geology for Society and Territory, vol 1. Springer International Publishing, pp 557–561

  • Rounsevell M, Reginster I, Araújo MB et al (2006) A coherent set of future land use change scenarios for Europe. Agric Ecosyst Environ 114:57–68. doi:10.1016/j.agee.2005.11.027

    Article  Google Scholar 

  • Schelhaas MJ, van Brusselen J, Pussinen A, et al. (2006) Outlook for the Development of European Forest Resources, a study prepared by the European Forest Sector Outlook Study (EFSOS). United Nations Economic Commission for Europe (UNECE), Geneva

  • Schmidt KM, Roering JJ, Stock JD et al (2001) The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range. Can Geotech J 38:995–1024. doi:10.1139/t01-031

    Article  Google Scholar 

  • Shearer AW (2005) Approaching scenario-based studies: three perceptions about the future and considerations for landscape planning. Environ Plan B Plan Des 32:67–87. doi:10.1068/b3116

    Article  Google Scholar 

  • Soares-Filho BS, Cerqueira GC, Pennachin CL (2002) Dinamica—a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier. Ecol Model 154:217–235. doi:10.1016/S0304-3800(02)00059-5

    Article  Google Scholar 

  • Soares-Filho BS, Nepstad DC, Curran LM et al (2006) Modelling conservation in the Amazon basin. Nature 440:520–523. doi:10.1038/nature04389

    Article  CAS  Google Scholar 

  • Taff GN, Müller D, Kuemmerle T et al (2009) Reforestation in Central and Eastern Europe after the breakdown of socialism. In: Nagendra H, Southworth J (eds) Reforesting landscapes. Springer, Dordrecht, pp 121–147

    Chapter  Google Scholar 

  • Tasser E, Mader M, Tappeiner U (2003) Effects of land use in alpine grasslands on the probability of landslides. Basic Appl Ecol 4:271–280. doi:10.1078/1439-1791-00153

    Article  Google Scholar 

  • Thapa RB, Shimada M, Watanabe M et al (2013) The tropical forest in south east Asia: monitoring and scenario modeling using synthetic aperture radar data. Appl Geogr 41:168–178. doi:10.1016/j.apgeog.2013.04.009

    Article  Google Scholar 

  • Van Maanen E, Predoiu G, Klaver R et al (2006) Safeguarding the Romanian Carpathian ecological network. A vision for large carnivores and biodiversity in Eastern Europe. Icas Wildlife Unit, Brasov

    Google Scholar 

  • Van Vliet J, Bregt AK, Hagen-Zanker A (2011) Revisiting Kappa to account for change in the accuracy assessment of land-use change models. Ecol Model 222:1367–1375. doi:10.1016/j.ecolmodel.2011.01.017

    Article  Google Scholar 

  • Veldkamp A, Lambin E (2001) Predicting land-use change. Agric Ecosyst Environ 85:1–6. doi:10.1016/S0167-8809(01)00199-2

    Article  Google Scholar 

  • Verburg PH, Schot PP, Dijst MJ, Veldkamp A (2004) Land use change modelling: current practice and research priorities. GeoJournal 61:309–324. doi:10.1007/s10708-004-4946-y

    Article  Google Scholar 

  • Visser H, de Nijs T (2006) The map comparison kit. Environ Model Softw 21:346–358. doi:10.1016/j.envsoft.2004.11.013

    Article  Google Scholar 

  • Wijesekara GN, Farjad B, Gupta A et al (2014) A comprehensive land-use/hydrological modeling system for scenario simulations in the Elbow River Watershed, Alberta, Canada. Environ Manag 53:357–381. doi:10.1007/s00267-013-0220-8

    Article  Google Scholar 

  • Wollenberg E, Edmunds D, Buck L (2000) Using scenarios to make decisions about the future: anticipatory learning for the adaptive co-management of community forests. Landsc Urban Plan 47:65–77. doi:10.1016/S0169-2046(99)00071-7

    Article  Google Scholar 

  • Yanai AM, Fearnside PM, de Graça PMLA, Nogueira EM (2012) Avoided deforestation in Brazilian Amazonia: simulating the effect of the Juma Sustainable Development Reserve. For Ecol Manag 282:78–91. doi:10.1016/j.foreco.2012.06.029

    Article  Google Scholar 

  • Zimmermann P, Tasser E, Leitinger G, Tappeiner U (2010) Effects of land-use and land-cover pattern on landscape-scale biodiversity in the European Alps. Agric Ecosyst Environ 139:13–22. doi:10.1016/j.agee.2010.06.010

    Article  Google Scholar 

  • Zumpano V, Hussin HY, Reichenbach P et al (2014) A landslide susceptibility analysis for Buzau County, Romania. Romanian J Geogr 58:9–16

    Google Scholar 

Download references

Acknowledgments

This work is a part of the CHANGES project (Changing hydro-meteorological risks—as Analysed by a New Generation of European Scientists), a Marie Curie Initial Training Network, funded by the European Community’s 7th Framework Programme FP7/2007-2013 under Grant Agreement No. 263953. The authors would also like to thank Roxana Ciurean, Veronica Zumpano, and Mihai Micu for their extensive help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Žiga Malek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malek, Ž., Boerboom, L. & Glade, T. Future Forest Cover Change Scenarios with Implications for Landslide Risk: An Example from Buzau Subcarpathians, Romania. Environmental Management 56, 1228–1243 (2015). https://doi.org/10.1007/s00267-015-0577-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-015-0577-y

Keywords

Navigation