Skip to main content
Log in

Cutaneous Melanoma and 486 Human Blood Metabolites: A Mendelian Randomization Study

  • Original Articles
  • Basic Science/Experimental
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

Abstract

Background

Cutaneous melanoma (CM) has long been recognized as a lethal form of cancer. Despite persistent research endeavors, the precise underlying pathological mechanisms remain largely unclear, and the optimal treatment for this patient population remains undetermined.

Objectives

This study aims to examine the causal associations between CM and 486 metabolites.

Methods

A two-sample Mendelian randomization (MR) analysis was conducted to ascertain the causal relationship between blood metabolites and CM. The causality analysis involved the inverse variance weighted (IVW) method, followed by the MR-Egger and weighted median (WM) methods. To increase the robustness of our findings, several sensitivity analyses, including the MR-Egger intercept, Cochran's Q test, and MR-pleiotropy residual sum and outlier (MR-PRESSO), were performed. The robustness of our results was further validated in independent outcome samples followed by a meta-analysis. Additionally, a metabolic pathway analysis was carried out.

Results

The two-sample MR analysis yielded a total of 27 metabolites as potential causal metabolites. After incorporating the outcomes of the sensitivity analyses, seven causal metabolites remained. Palmitoylcarnitine (OR 0.9903 95% CI 0.9848–0.9958, p = 0.0005) emerged as the sole metabolite with a significant causality after Bonferroni correction. Furthermore, the reverse MR analysis provided no evidence of reverse causality from CM to the identified metabolites.

Conclusions

This study suggested a causal relationship between seven human blood metabolites and the development of CM, thereby offering novel insights into the underlying mechanisms involved.

No Level Assigned

This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Reference

  1. Sauter ER, Herlyn M (1998) Molecular biology of human melanoma development and progression. Mol Carcinog 23(3):132–43

    Article  CAS  PubMed  Google Scholar 

  2. Slominski A, Wortsman J, Nickoloff B, McClatchey K, Mihm MC, Ross JS (1998) Molecular pathology of malignant melanoma. Am J Clin Pathol 110(6):788–794

    Article  CAS  PubMed  Google Scholar 

  3. Rastrelli M, Tropea S, Rossi CR, Alaibac M (2014) Melanoma: epidemiology, risk factors, pathogenesis, diagnosis and classification. In Vivo 28(6):1005–11

    PubMed  Google Scholar 

  4. Ahmed B, Qadir MI, Ghafoor S (2020) Malignant melanoma: skin cancer-diagnosis, prevention, and treatment. Crit Rev Eukaryot Gene Expr 30(4):291–297

    Article  PubMed  Google Scholar 

  5. Wang S, Chen Y, Sun J, Mo R, Tan Q (2023) Development and validation of two online dynamic nomograms for patients with non-distant metastatic cutaneous melanoma based on surgical approaches. Cancer Med 12(18):18479–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schmidt DR, Patel R, Kirsch DG, Lewis CA, Vander Heiden MG, Locasale JW (2021) Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J Clin 71(4):333–58

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liang L, Sun F, Wang H, Hu Z (2021) Metabolomics, metabolic flux analysis and cancer pharmacology. Pharmacol Ther 224:107827

    Article  CAS  PubMed  Google Scholar 

  8. Kosmopoulou M, Giannopoulou AF, Iliou A, Benaki D, Panagiotakis A, Velentzas AD et al (2020) Human melanoma-cell metabolic profiling: identification of novel biomarkers indicating metastasis. Int J Mol Sci 21(7):2436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Weber DD, Thapa M, Aminzadeh-Gohari S, Redtenbacher AS, Catalano L, Feichtinger RG et al (2021) Targeted metabolomics identifies plasma biomarkers in mice with metabolically heterogeneous melanoma xenografts. Cancers 13(3):434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hagyousif YA, Sharaf BM, Zenati RA, El-Huneidi W, Bustanji Y, Abu-Gharbieh E et al (2023) Skin cancer metabolic profile assessed by different analytical platforms. Int J Mol Sci 24(2):1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Johnson CH, Ivanisevic J, Siuzdak G (2016) Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 17(7):451–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Taylor NJ, Gaynanova I, Eschrich SA, Welsh EA, Garrett TJ, Beecher C et al (2020) Metabolomics of primary cutaneous melanoma and matched adjacent extratumoral microenvironment. PLoS One 15(10):e0240849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu Y, Cao Y, Zhang W, Bergmeier S, Qian Y, Akbar H et al (2012) A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol Cancer Ther 11(8):1672–82

    Article  CAS  PubMed  Google Scholar 

  14. Cao X, Fang L, Gibbs S, Huang Y, Dai Z, Wen P et al (2007) Glucose uptake inhibitor sensitizes cancer cells to daunorubicin and overcomes drug resistance in hypoxia. Cancer Chemother Pharmacol 59(4):495–505

    Article  CAS  PubMed  Google Scholar 

  15. Bennett DA (2010) An introduction to instrumental variables–part 2: Mendelian randomisation. Neuroepidemiology 35(4):307–310

    Article  PubMed  Google Scholar 

  16. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G (2008) Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med 27(8):1133–63

    Article  MathSciNet  PubMed  Google Scholar 

  17. Elliott J, Bodinier B, Bond TA, Chadeau-Hyam M, Evangelou E, Moons KGM et al (2020) Predictive accuracy of a polygenic risk score-enhanced prediction model versus a clinical risk score for coronary artery disease. JAMA 323(7):636–645

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shin SY, Fauman EB, Petersen AK, Krumsiek J, Santos R, Huang J et al (2014) An atlas of genetic influences on human blood metabolites. Nat Genet 46(6):543–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Burgess S, Thompson SG, Collaboration CCG (2011) Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol 40(3):755–64

    Article  PubMed  Google Scholar 

  20. Bowden J, Del Greco MF, Minelli C, Davey Smith G, Sheehan N, Thompson J (2017) A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat Med 36(11):1783–802

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  21. Burgess S, Thompson SG (2017) Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol 32(5):377–89

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bowden J, Davey Smith G, Haycock PC, Burgess S (2016) Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol 40(4):304–314

    Article  PubMed  PubMed Central  Google Scholar 

  23. Verbanck M, Chen CY, Neale B, Do R (2018) Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 50(5):693–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40(Database issue):D109-14

    Article  CAS  PubMed  Google Scholar 

  25. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G et al (2018) MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res 46(W1):W486–W94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vescovi G, Weber B, Matrat M, Ramacci C, Nabet P, Kremer B (1988) Modulation by palmitoyl-carnitine of calcium activated, phospholipid-dependent protein kinase activity and inhibition of melanoma cell growth. Br J Dermatol 119(2):171–178

    Article  CAS  PubMed  Google Scholar 

  27. Sumantran VN, Mishra P, Sudhakar N (2015) Microarray analysis of differentially expressed genes regulating lipid metabolism during melanoma progression. Indian J Biochem Biophys 52(2):125–31

    CAS  PubMed  Google Scholar 

  28. Yan C, Wu D, Gan L, Wang J, Yang W, Xu B (2022) Significant metabolic alterations in non-small cell lung cancer patients by epidermal growth factor receptor-targeted therapy and PD-1/PD-L1 immunotherapy. Front Pharmacol 13:949745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lin Z, Liu F, Shi P, Song A, Huang Z, Zou D et al (2018) Fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C. Stem Cell Res Ther 9(1):47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dong R, Ye N, Zhao S, Wang G, Zhang Y, Wang T et al (2021) Studies on novel diagnostic and predictive biomarkers of intrahepatic cholestasis of pregnancy through metabolomics and proteomics. Front Immunol 12:733225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bouchouirab FZ, Fortin M, Noll C, Dube J, Carpentier AC (2018) Plasma palmitoyl-carnitine (AC16:0) is a marker of increased postprandial nonesterified incomplete fatty acid oxidation rate in adults with type 2 diabetes. Can J Diabetes 42(4):382–8

    Article  PubMed  Google Scholar 

  32. Wenzel U, Nickel A, Daniel H (2005) Increased carnitine-dependent fatty acid uptake into mitochondria of human colon cancer cells induces apoptosis. J Nutr 135(6):1510–4

    Article  CAS  PubMed  Google Scholar 

  33. Turnbull PC, Hughes MC, Perry CGR (2019) The fatty acid derivative palmitoylcarnitine abrogates colorectal cancer cell survival by depleting glutathione. Am J Physiol Cell Physiol 317(6):C1278–C1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Beloribi-Djefaflia S, Vasseur S, Guillaumond F (2016) Lipid metabolic reprogramming in cancer cells. Oncogenesis 5(1):e189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fu Y, Rathod D, Patel K (2020) Protein kinase C inhibitor anchored BRD4 PROTAC PEGylated nanoliposomes for the treatment of vemurafenib-resistant melanoma. Exp Cell Res 396(1):112275

    Article  CAS  PubMed  Google Scholar 

  36. Sobiesiak-Mirska J, Nałecz MJ, Nałecz KA (2003) Interaction of palmitoylcarnitine with protein kinase C in neuroblastoma NB-2a cells. Neurochem Int 42(1):45–55

    Article  CAS  PubMed  Google Scholar 

  37. Alberg AJ, Gordon GB, Hoffman SC, Comstock GW, Helzlsouer KJ (2000) Serum dehydroepiandrosterone and dehydroepiandrosterone sulfate and the subsequent risk of developing colon cancer. Cancer Epidemiol Biomark. Prev. 9(5):517–21

    CAS  Google Scholar 

  38. Alberg AJ, Gordon GB, Genkinger JM, Hoffman SC, Selvin E, Comstock GW et al (2001) Serum dehydroepiandrosterone and dehydroepiandrosterone sulfate and risk of melanoma or squamous cell carcinoma of the skin. Anticancer Res 21(6a):4051–4

    CAS  PubMed  Google Scholar 

  39. Yang P, Cartwright CA, Li J, Wen S, Prokhorova IN, Shureiqi I et al (2012) Arachidonic acid metabolism in human prostate cancer. Int J Oncol 41(4):1495–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chang J, Jiang L, Wang Y, Yao B, Yang S, Zhang B et al (2015) 12/15 Lipoxygenase regulation of colorectal tumorigenesis is determined by the relative tumor levels of its metabolite 12-HETE and 13-HODE in animal models. Oncotarget 6(5):2879–2888

    Article  PubMed  Google Scholar 

  41. Liu Q, Tan W, Che J, Yuan D, Zhang L, Sun Y et al (2018) 12-HETE facilitates cell survival by activating the integrin-linked kinase/NF-kappaB pathway in ovarian cancer. Cancer Manag Res 10:5825–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Winer I, Normolle DP, Shureiqi I, Sondak VK, Johnson T, Su L et al (2002) Expression of 12-lipoxygenase as a biomarker for melanoma carcinogenesis. Melanoma Res 12(5):429–34

    Article  CAS  PubMed  Google Scholar 

  43. Honn KV, Tang DG, Gao X, Butovich IA, Liu B, Timar J et al (1994) 12-lipoxygenases and 12(S)-HETE: role in cancer metastasis. Cancer Metastasis Rev 13(3–4):365–96

    Article  CAS  PubMed  Google Scholar 

  44. Kang KH, Ling TY, Liou HH, Huang YK, Hour MJ, Liou HC et al (2013) Enhancement role of host 12/15-lipoxygenase in melanoma progression. Eur J Cancer. 49(12):2747–59

    Article  CAS  PubMed  Google Scholar 

  45. Long GV, Swetter SM, Menzies AM, Gershenwald JE, Scolyer RA (2023) Cutaneous melanoma. Lancet 402(10400):485–502

    Article  PubMed  Google Scholar 

  46. Rashid S, Shaughnessy M, Tsao H (2023) Melanoma classification and management in the era of molecular medicine. Dermatol Clin 41(1):49–63

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Li or Jiguang Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to disclose.

Human and Animal Rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

For this type of study, informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Gao, Y., Fu, L. et al. Cutaneous Melanoma and 486 Human Blood Metabolites: A Mendelian Randomization Study. Aesth Plast Surg (2024). https://doi.org/10.1007/s00266-024-03873-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00266-024-03873-x

Keywords

Navigation