Skip to main content

Advertisement

Log in

Non-invasive Body Contouring Technologies: An Updated Narrative Review

  • Review
  • Body Contouring
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

Abstract

Introduction

Nowadays, a lot of body contouring devices and methods are introduced all over the world. The object of the present narrative review was to update and classify existing evidence on these methods and devices.

Methods

We searched databases including PubMed, Cochrane, and Google Scholar for 11 essential keywords, including cryolipolysis, high-intensity focused ultrasound (HIFU), shock wave, low-level laser therapy (LLLT), radiofrequency (RF), capacitive resistive electrical transfer (TECAR), high-intensity focused electromagnetic (HIFEM), electromyostimulation (EMS), carboxytherapy, mesotherapy, and acupuncture and their abbreviations, in addition to obesity, overweight, cellulite, subcutaneous fat, and body contouring.

Results

Totally 193 references were used in 11 main topics.

Conclusion

In order to help physicians with finding the best evidence in different methods, the data were summarised in 11 topics. Furthermore, FDA-approved devices, side effects and common protocols were described in each section.

Level of Evidence I

This journal requires that authors 39 assign a level of evidence to each article. For a full 40 description of these Evidence-Based Medicine ratings, 41 please refer to the Table of Contents or the online 42 Instructions to Authors www.springer.com/00266.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duncan W, Freeman RG, Heaton CL (1966) Cold panniculitis. Arch Dermatol 94(6):722–724

    Article  CAS  PubMed  Google Scholar 

  2. Epstein EH Jr, Oren ME (1970) Popsicle panniculitis. N Engl J Med 282(17):966–967

    Article  PubMed  Google Scholar 

  3. Manstein D, Laubach H, Watanabe K, Farinelli W, Zurakowski D, Anderson R (2008) Selective cryolysis: a novel method of non-invasive fat removal. Lasers Surg Med 40(9):595–604

    Article  PubMed  Google Scholar 

  4. Bernstein EF (2016) Long-term efficacy follow-up on two cryolipolysis case studies: 6 and 9 years post-treatment. J Cosmet Dermatol 15(4):561–564

    Article  PubMed  Google Scholar 

  5. Rice TM, Savetsky IL (2018) Current evidence in nonsurgical fat reduction. Advances in Cosmetic Surgery. 1(1):55–66

    Article  Google Scholar 

  6. Ingargiola MJ, Motakef S, Chung MT, Vasconez HC, Sasaki GH (2015) Cryolipolysis for fat reduction and body contouring: safety and efficacy of current treatment paradigms. Plast Reconstr Surg 135(6):1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Atiyeh BS, Fadul R Jr, Chahine F (2020) Cryolipolysis (CLL) for reduction of localized subcutaneous fat: review of the literature and an evidence-based analysis. Aesthetic Plast Surg 44(6):2163–2172

    Article  PubMed  Google Scholar 

  8. Pugliese D, Melfa F, Guarino E, Cascardi E, Maggi M, Ferrari E et al (2020) Histopathological features of tissue alterations induced by cryolipolysis on human adipose tissue. Aesthetic Surg J 40(7):761–766

    Article  Google Scholar 

  9. Klein KB, Zelickson B, Riopelle JG, Okamoto E, Bachelor EP, Harry RS et al (2009) Non-invasive cryolipolysis™ for subcutaneous fat reduction does not affect serum lipid levels or liver function tests. Lasers Surg Med 41(10):785–790

    Article  PubMed  Google Scholar 

  10. Jalian HR, Avram MM, Garibyan L, Mihm MC, Anderson RR (2014) Paradoxical adipose hyperplasia after cryolipolysis. JAMA Dermatol 150(3):317–319

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hedayati B, Juhász M, Chu S, Mesinkovska NA (2020) Adverse events associated with cryolipolysis: a systematic review of the literature. Dermatol Surg 46(Suppl 1):S8-s13

    Article  CAS  PubMed  Google Scholar 

  12. Nelson AA, Wasserman D, Avram MM (2009) Cryolipolysis for reduction of excess adipose tissue. Semin Cutan Med Surg 28(4):244–9

  13. Coleman SR, Sachdeva K, Egbert BM, Preciado J, Allison J (2009) Clinical efficacy of noninvasive cryolipolysis and its effects on peripheral nerves. Aesthetic Plast Surg 33(4):482–488

    Article  PubMed  Google Scholar 

  14. Derrick CD, Shridharani SM, Broyles JM (2015) The safety and efficacy of cryolipolysis: a systematic review of available literature. Aesthetic Surg J 35(7):830–836

    Article  Google Scholar 

  15. Alizadeh Z, Halabchi F, Mazaheri R, Abolhasani M, Tabesh M (2016) Review of the mechanisms and effects of noninvasive body contouring devices on cellulite and subcutaneous fat. Int J Endocrinol Metabol 14(4)

  16. Kilmer SL, Burns AJ, Zelickson BD (2016) Safety and efficacy of cryolipolysis for non-invasive reduction of submental fat. Lasers Surg Med 48(1):3–13

    Article  PubMed  Google Scholar 

  17. Avram MM, Harry RS (2009) Cryolipolysis™ for subcutaneous fat layer reduction. Lasers Surg Med 41(10):703–708

    Article  PubMed  Google Scholar 

  18. Altmann J, Burns AJ, Kilmer SL, Lee C, Lim T, Metelitsa A, et al (2022) Global expert opinion on cryolipolysis treatment recommendations and considerations: a modified Delphi study. Aesthetic Surgery J Open Forum 4

  19. Boey GE, Wasilenchuk JL (2014) Enhanced clinical outcome with manual massage following cryolipolysis treatment: a 4-month study of safety and efficacy. Lasers Surg Med 46(1):20–26

    Article  PubMed  Google Scholar 

  20. Ferraro G, De Francesco F, Cataldo C, Rossano F, Nicoletti G, D’Andrea F (2012) Synergistic effects of cryolipolysis and shock waves for noninvasive body contouring. Aesthetic Plast Surg 36(3):666–679

    Article  CAS  PubMed  Google Scholar 

  21. Meyer PF, Davi Costa e Silva J, Santos de Vasconcellos L, de Morais Carreiro E, Valentim da Silva RM (2018) Cryolipolysis: patient selection and special considerations. Clin Cosmet Investig Dermatol 11:499–503

  22. Pennycook K, Lemchak D, Julian C (2020) Cryolipolysis—an update. Dermatological Reviews. 1(4):118–122

    Article  Google Scholar 

  23. Friedmann DP (2019) Cryolipolysis for noninvasive contouring of the periumbilical abdomen with a nonvacuum conformable-surface applicator. Dermatol Surg 45(9):1185–1190

    Article  CAS  PubMed  Google Scholar 

  24. Abdel-Aal NM, Elerian AE, Elmakaky AM, Alhamaky DMA (2020) Systemic effects of cryolipolysis in central obese women: a randomized controlled trial. Lasers Surg Med 52(10):971–978

    Article  PubMed  Google Scholar 

  25. Adjadj L, SidAhmed-Mezi M, Mondoloni M, Meningaud JP, Hersant B (2017) Assessment of the efficacy of cryolipolysis on saddlebags: a prospective study of 53 patients. Plast Reconstr Surg 140(1):50–57

    Article  CAS  PubMed  Google Scholar 

  26. Stevens WG, Bachelor EP (2015) Cryolipolysis conformable-surface applicator for nonsurgical fat reduction in lateral thighs. Aesthetic Surg J 35(1):66–71

    Article  Google Scholar 

  27. Dover JA, Burns J, Coleman S, Fitzpatrick R, Garden J, Goldberg D, et al (eds) (2009) A prospective clinical study of noninvasive cryolipolysis for subcutaneous fat layer reduction-interim report of available subject data. Lasers in Surgery and Medicine; John Wiley & Sons

  28. Lee SJ, Jang HW, Kim H, Suh DH, Ryu HJ (2016) Non-invasive cryolipolysis to reduce subcutaneous fat in the arms. J Cosmet Laser Ther 18(3):126–129

    Article  PubMed  Google Scholar 

  29. Lipner SR (2018) Cryolipolysis for the treatment of submental fat: review of the literature. J Cosmet Dermatol 17(2):145–151

    Article  PubMed  Google Scholar 

  30. Resende L, Noites A, Amorim M (2022) Application of cryolipolysis in adipose tissue: a systematic review. J Cosmet Dermatol 21(10):4122–4132

    Article  PubMed  Google Scholar 

  31. Tan T, Snell B, Braun M, Mohan S, Jo E, Patel V et al (2021) High participant satisfaction achieved using cryolipolysis for fat reduction of the abdomen and flanks. Aesthetic Surg J 42(7):760–770

    Article  Google Scholar 

  32. Oh CH, Shim JS, Bae KI, Chang JH (2020) Clinical application of cryolipolysis in Asian patients for subcutaneous fat reduction and body contouring. Arch Plast Surg 47(01):62–69

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sasaki GH, Abelev N, Tevez-Ortiz A (2014) Noninvasive selective cryolipolysis and reperfusion recovery for localized natural fat reduction and contouring. Aesthetic Surg J 34(3):420–431

    Article  Google Scholar 

  34. Krueger N, Mai SV, Luebberding S, Sadick NS (2014) Cryolipolysis for noninvasive body contouring: clinical efficacy and patient satisfaction. Clin Cosmet Investig Dermatol 7:201

    PubMed  PubMed Central  Google Scholar 

  35. Shek SY, Chan NP, Chan HH (2012) Non-invasive cryolipolysis for body contouring in Chinese—a first commercial experience. Lasers Surg Med 44(2):125–130

    Article  PubMed  Google Scholar 

  36. Michon A (2021) A prospective study determining patient satisfaction with combined cryolipolysis and shockwave therapy treatment for noninvasive body contouring. Aesthetic Plast Surg 45(5):2317–2325

    Article  PubMed  Google Scholar 

  37. Stevens WG, Pietrzak LK, Spring MA (2013) Broad overview of a clinical and commercial experience with CoolSculpting. Aesthetic Surg J 33(6):835–846

    Article  Google Scholar 

  38. Kelly E, Rodriguez-Feliz J, Kelly ME (2016) Paradoxical adipose hyperplasia after cryolipolysis: a report on incidence and common factors identified in 510 patients. Plast Reconstr Surg 137(3):639e-e640

    Article  CAS  PubMed  Google Scholar 

  39. Nikolis A, Enright KM (2020) A multicenter evaluation of paradoxical adipose hyperplasia following cryolipolysis for fat reduction and body contouring: a review of 8658 cycles in 2114 patients. Aesthetic Surg J 41(8):932–941

    Article  Google Scholar 

  40. Faulhaber J, Sandhofer M, Weiss C, Sattler G, Sadick NS (2019) Effective noninvasive body contouring by using a combination of cryolipolysis, injection lipolysis, and shock waves. J Cosmet Dermatol 18(4):1014–1019

    Article  PubMed  Google Scholar 

  41. Kilmer SL, Cox SE, Zelickson BD, Bachelor EP, Gamio S, Ostrowski R et al (2020) Feasibility study of electromagnetic muscle stimulation and cryolipolysis for abdominal contouring. Dermatol Surg 46(Suppl 1):14–21

    Article  Google Scholar 

  42. Khedmatgozar H, Yadegari M, Khodadadegan MA, Khodabandeh AK, Ghazavi H, Esmaily H et al (2020) The effect of ultrasound cavitation in combination with cryolipolysis as a non-invasive selective procedure for abdominal fat reduction. Diabetes Metab Syndr 14(6):2185–2189

    Article  PubMed  Google Scholar 

  43. Naeimi M, Khorasanchi Z, Mohammadzadeh E, Safari M, Naserifar Z, Afshari A, Ghazizadeh H et al (2019) Treatment by cryolipolysis with radio-frequency and ultrasound cavitation combination is no more effective in improving indices of adiposity than radio-frequency and ultrasound cavitation alone. Translational Metabolic Syndrome Research. 2(1):7–10

    Article  Google Scholar 

  44. Abboud S, Hachem JP (2020) Heat shock lipolysis: radiofrequency combined with cryolipolysis for the reduction of localized subcutaneous fat. Dermatol Res Pract 2020:4093907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Abdel-Aal NM, Mostafa M, Saweres JW, Ghait RS (2022) Cavitation and radiofrequency versus cryolipolysis on leptin regulation in central obese subjects: a randomized controlled study. Lasers Surg Med 54(7):955–963

    Article  PubMed  Google Scholar 

  46. Dierickx CC, Mazer JM, Sand M, Koenig S, Arigon V (2013) Safety, tolerance, and patient satisfaction with noninvasive cryolipolysis. Dermatol Surg 39(8):1209–1216

    Article  CAS  PubMed  Google Scholar 

  47. Fonseca VM, Campos PS, Certo TF, de Faria LT, Juliano PB, Cintra DE et al (2018) Efficacy and safety of noninvasive focused ultrasound for treatment of subcutaneous adiposity in healthy women. J Cosmet Laser Ther 20(6):341–50

    Article  PubMed  Google Scholar 

  48. Juhász M, Korta D, Mesinkovska NA (2018) A review of the use of ultrasound for skin tightening, body contouring, and cellulite reduction in dermatology. Dermatol Surg 44(7):949–963

    Article  PubMed  Google Scholar 

  49. Hong JY, Ko EJ, Choi SY, Kwon T-R, Kim JH, Kim SY, et al (2020) Efficacy and safety of high-intensity focused ultrasound for noninvasive abdominal subcutaneous fat reduction. Dermatol Surg 46(2):213–219

  50. Atiyeh BS, Chahine F (2021) Evidence-based efficacy of high-intensity focused ultrasound (HIFU) in aesthetic body contouring. Aesthetic Plast Surg 45(2):570–578

    Article  PubMed  Google Scholar 

  51. Giesse S (2021) A German prospective study of the safety and efficacy of a non-invasive, high-intensity, electromagnetic abdomen and buttock contouring device. J Clin Aesthet Dermatol. 14(1):30–33

    PubMed  PubMed Central  Google Scholar 

  52. U.S. Food & Drug Administration (2022) Non-invasive body contouring technologies. www.fda.gov/medical-devices/aesthetic-cosmetic-devices/non-invasive-body-contouring-technologies.

  53. Oh S, Kim HM, Batsukh S, Sun HJ, Kim T, Kang D et al (2022) High-intensity focused ultrasound induces adipogenesis via control of cilia in adipose-derived stem cells in subcutaneous adipose tissue. Int J Mol Sci 23(16):8866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shek SY, Yeung CK, Chan JC, Chan HH (2014) Efficacy of high-intensity focused ultrasonography for noninvasive body sculpting in Chinese patients. Lasers Surg Med 46(4):263–269

    Article  PubMed  Google Scholar 

  55. Ascher B (2010) Safety and efficacy of UltraShape Contour I treatments to improve the appearance of body contours: multiple treatments in shorter intervals. Aesthet Surg J 30(2):217–224

    Article  PubMed  Google Scholar 

  56. Tan JS, Lin CC, Cheng JS, Chen GS (2020) High-intensity focused ultrasound ablation combined with electrical passive exercise for fast removal of body fat. Plast Reconstr Surg 145(6):1427–1438

    Article  CAS  PubMed  Google Scholar 

  57. Allam NM, Elshorbagy RT, Eid MM, Abdelbasset WK, Elkholi SM, Eladl HM (2021) Comparison of extracorporeal shock wave therapy versus manual lymphatic drainage on cellulite after liposuction: a randomized clinical trial. Evidence-Based Complementary and Alternative Medicine. 2021:9956879

    Article  PubMed  PubMed Central  Google Scholar 

  58. Modena DAO, Nogueira da Silva C, Delinocente TC, Bianca de Araújo T, de Carvalho TM, Grecco C, et al (2019) Effectiveness of the electromagnetic shock wave therapy in the treatment of cellulite. Dermatol Res Pract 2019:8246815

  59. Hexsel D, Camozzato FO, Silva AF, Siega C (2017) Acoustic wave therapy for cellulite, body shaping and fat reduction. J Cosmet Laser Ther 19(3):165–173

    Article  PubMed  Google Scholar 

  60. Troia S, Moreira AM, Pisco D, Noites A, Vale AL, Carvalho P et al (2021) Effect of shock wave therapy associated with aerobic exercise on cellulite: A randomized controlled trial. J Cosmet Dermatol 20(6):1732–1742

    Article  PubMed  Google Scholar 

  61. Michon A (2021) Shockwave therapy for the prevention of paradoxical adipose hyperplasia after cryolipolysis: myth or reality? Aesthetic Surg J 41(8):1137–8

    Article  Google Scholar 

  62. Ashem HN, Draz AH, Abdel-Aziem AA (2019) Caffeine phonophoresis versus shock wave therapy for adult women with cellulite: a randomized controlled trial. Bull Faculty Phys Therapy. 24(2):66–71

    Article  Google Scholar 

  63. Lee KJ, Park JI, Oh SY (2021) The effects of extracorporeal shock wave therapy vs hand massage on serum lipids in overweight and obese women. Ann Med Surg 63:102057

    Article  Google Scholar 

  64. Knobloch K, Joest B, Krämer R, Vogt PM (2013) Cellulite and focused extracorporeal shockwave therapy for non-invasive body contouring: a randomized trial. Dermatol Therapy. 3(2):143–155

    Article  Google Scholar 

  65. Modena DAO, Soares CD, Candido EC, Chaim FDM, Cazzo E, Chaim EA (2022) Effect of extracorporeal shock waves on inflammation and angiogenesis of integumentary tissue in obese individuals: stimulating repair and regeneration. Lasers Med Sci 37(2):1289–1297

  66. Tveten S (2014) Extracorporal Shockwave therapy in aesthetic medicine

  67. Eid J (2016) Consensus statement on ESWT indications and contraindications. International Society for Medical Shockwave Treatment

  68. Ionescu A-M (2019) Shock wave therapy applications in Sports Medicine. Health, Sports & Rehabilitation Medicine 20(3):130–133

  69. Wigley CH, Janssen TJ, Mosahebi A (2023) Shock wave therapy in plastic surgery: a review of the current indications. Aesthetic Surgery Journal 43(3):370–386

  70. Neira R, Arroyave J, Ramirez H, Ortiz CL, Solarte E, Sequeda F et al (2002) Fat liquefaction: effect of low-level laser energy on adipose tissue. Plast Reconstr Surg 110(3):912–22 (discussion 23-5)

    Article  PubMed  Google Scholar 

  71. Jankowski M, Gawrych M, Adamska U, Ciescinski J, Serafin Z, Czajkowski R (2017) Low-level laser therapy (LLLT) does not reduce subcutaneous adipose tissue by local adipocyte injury but rather by modulation of systemic lipid metabolism. Lasers Med Sci 32(2):475–479

    Article  PubMed  Google Scholar 

  72. Jalian H, Avram MM (2012) Body contouring: the skinny on noninvasive fat removal. Semin Cutan Med Surg 31(2):121–5

  73. Martins MG, Martins MIM, de Souza AH, Antunes FTT, Pail PB, de Fátima WE et al (2022) Evaluation of lipolysis and toxicological parameters of low-level laser therapy at different wavelengths and doses in the abdominal subcutaneous tissue. Lasers Med Sci 37(2):1235–1244

    Article  PubMed  Google Scholar 

  74. Jackson RF, Dedo DD, Roche GC, Turok DI, Maloney RJ (2009) Low-level laser therapy as a non-invasive approach for body contouring: a randomized, controlled study. Lasers Surg Med 41(10):799–809

    Article  PubMed  Google Scholar 

  75. Jackson RF, Stern FA, Neira R, Ortiz-Neira CL, Maloney J (2012) Application of low-level laser therapy for noninvasive body contouring. Lasers Surg Med 44(3):211–217

    Article  PubMed  Google Scholar 

  76. Decorato JW, Chen B, Sierra R (2017) Subcutaneous adipose tissue response to a non-invasive hyperthermic treatment using a 1060 nm laser. Lasers Surg Med 49(5):480–489

    Article  PubMed  Google Scholar 

  77. Lianru Z, Yu Z, Jia K, Yinmin X, ChengLi S (2021) A computational and experimental study to compare the effectiveness of bipolar mode with phase-shift angle mode in radiofrequency fat dissolution on subcutaneous tissue. Lasers Surg Med 53(10):1395–1412

    Article  PubMed  Google Scholar 

  78. da Silva RMV, Santos JC, de Carvalho WLM, de Vasconcellos LS, de Castro ABF, Borges FDS et al (2022) Effects of ultracavitation and radiofrequency on abdominal adiposity. J Clin Aesthet Dermatol. 15(1):E66–E71

    PubMed  PubMed Central  Google Scholar 

  79. Chia CT, Marte JA, Ulvila DD, Theodorou SJ (2020) Second generation radiofrequency body contouring device: safety and efficacy in 300 local anesthesia liposuction cases. Plast Reconstr Surg Glob Open 8(9):e3113

    Article  PubMed  PubMed Central  Google Scholar 

  80. Goldberg DJ (2021) Deletion of adipocytes induced by a novel device simultaneously delivering synchronized radiofrequency and hifem: Human histological study. J Cosmet Dermatol 20(4):1104–1109

    Article  PubMed  PubMed Central  Google Scholar 

  81. Han X, Yang M, Yin B, Cai L, Jin S, Zhang X et al (2021) The efficacy and safety of subcutaneous radiofrequency after liposuction: a new application for face and neck skin tightening. Aesthet Surg J 41(3):94–100

    Article  Google Scholar 

  82. Yu V, Juhasz MLW, Mesinkovska NA (2019) Subcutaneous radiofrequency microneedling for the treatment of thigh skin laxity caused by weight loss: a case study. J Clin Aesthet Dermatol. 12(6):60–62

    PubMed  PubMed Central  Google Scholar 

  83. Alexiades M, Munavalli GS (2021) Single treatment protocol with microneedle fractional radiofrequency for treatment of body skin laxity and fat deposits. Lasers Surg Med 53(8):1026–1031

    Article  PubMed  PubMed Central  Google Scholar 

  84. Samuels JB, Katz B, Weiss RA (2022) Radiofrequency heating and high-intensity focused electromagnetic treatment delivered simultaneously: the first sham-controlled randomized trial. Plast Reconstr Surg 149(5):893e–900e

    Article  CAS  PubMed  Google Scholar 

  85. Vale AL, Pereira AS, Morais A, de Carvalho P, Vilarinho R, Mendonca A et al (2020) Effect of four sessions of aerobic exercise with abdominal radiofrequency in adipose tissue in healthy women: randomized control trial. J Cosmet Dermatol 19(2):359–367

    Article  PubMed  Google Scholar 

  86. Araujo AR, Soares VP, Silva FS, Moreira TS (2015) Radiofrequency for the treatment of skin laxity: mith or truth. An Bras Dermatol 90(5):707–721

    Article  PubMed  PubMed Central  Google Scholar 

  87. Meyer PF, Da Silva RMV, Carreiro EDM, dos Santos BF, Queiroga S, Picariello F (2022) Effects of tecar therapy on adipose tissue: clinical trial. Journal of Biosciences and Medicines. 10(4):169–180

    Article  CAS  Google Scholar 

  88. Clijsen R, Leoni D, Schneebeli A, Cescon C, Soldini E, Li L et al (2020) Does the application of Tecar therapy affect temperature and perfusion of skin and muscle microcirculation? A pilot feasibility study on healthy subjects. The Journal of Alternative and Complementary Medicine. 26(2):147–153

    Article  PubMed  PubMed Central  Google Scholar 

  89. Szabo DA, Neagu N, Teodorescu S, Predescu C, Sopa IS, Panait L (2022) TECAR therapy associated with high-intensity laser therapy (hilt) and manual therapy in the treatment of muscle disorders: a literature review on the theorised effects supporting their use. J Clin Med 11(20):6149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Osti R, Pari C, Salvatori G, Massari L (2015) Tri-length laser therapy associated to tecar therapy in the treatment of low-back pain in adults: a preliminary report of a prospective case series. Lasers Med Sci 30:407–412

    Article  PubMed  Google Scholar 

  91. Ribeiro S, Henriques B, Cardoso R (2018) The effectiveness of tecar therapy in musculoskeletal disorders. International Journal of Public Health and Health Systems. 3(5):77–83

    Google Scholar 

  92. Hombrados Balza MJ, Rodriguez Lastra J, Arroyo Fernández RL (2021) Improvement of body contour in young women using a high-power radiofrequency device. J Cosmet Laser Ther 23(7–8):195–201

    Article  PubMed  Google Scholar 

  93. Hoffmann K, Soemantri S, Hoffmann K, Hoffmann KKP (2020) Body shaping with high-intensity focused electromagnetic technology. Journal für Ästhetische Chirurgie. 13(2):64–69

    Article  Google Scholar 

  94. Halaas Y, Bernardy J (2020) Mechanism of nonthermal induction of apoptosis by high-intensity focused electromagnetic procedure: Biochemical investigation in a porcine model. J Cosmet Dermatol 19(3):605–611

    Article  PubMed  PubMed Central  Google Scholar 

  95. Jacob CI, Paskova K (2018) Safety and efficacy of a novel high-intensity focused electromagnetic technology device for noninvasive abdominal body shaping. J Cosmet Dermatol 17(5):783–787

    Article  PubMed  Google Scholar 

  96. Kent DE, Kinney BM (2021) The effect of high-intensity focused electromagnetic procedure on visceral adipose tissue: Retrospective assessment of computed tomography scans. J Cosmet Dermatol 20(3):757–762

    Article  PubMed  PubMed Central  Google Scholar 

  97. Duncan D, Dinev I (2020) Noninvasive induction of muscle fiber hypertrophy and hyperplasia: effects of high-intensity focused electromagnetic field evaluated in an in-vivo porcine model: a pilot study. Aesthetic Surg J 40(5):568–574

    Article  Google Scholar 

  98. Pano-Rodriguez A, Beltran-Garrido JV, Hernández-González V, Reverter-Masia J (2019) Effects of whole-body electromyostimulation on health and performance: a systematic review. BMC Complement Altern Med 19(1):87

    Article  PubMed  PubMed Central  Google Scholar 

  99. Jee YS (2018) The efficacy and safety of whole-body electromyostimulation in applying to human body: based from graded exercise test. J Exerc Rehabil. 14(1):49–57

    Article  PubMed  PubMed Central  Google Scholar 

  100. Kemmler W, Shojaa M, Steele J, Berger J, Fröhlich M, Schoene D et al (2021) Efficacy of whole-body electromyostimulation (WB-EMS) on body composition and muscle strength in non-athletic adults. A systematic review and meta-analysis. Front Physiol 12:640657

    Article  PubMed  PubMed Central  Google Scholar 

  101. Rodrigues-Santana L, Hugo L, Pérez-Gómez J, Hernández-Mocholí MA, Carlos-Vivas J, Saldaña-Cortés P et al (2023) The effects of whole-body muscle stimulation on body composition and strength parameters: A PRISMA systematic review and meta-analysis. Medicine (Baltimore) 102(8):e32668

    Article  PubMed  Google Scholar 

  102. Porcari JP, Miller J, Cornwell K, Foster C, Gibson M, McLean K et al (2005) The effects of neuromuscular electrical stimulation training on abdominal strength, endurance, and selected anthropometric measures. J Sports Sci Med 4(1):66–75

    PubMed  PubMed Central  Google Scholar 

  103. Kemmler W, Teschler M, Weißenfels A, Bebenek M, Fröhlich M, Kohl M et al (2016) Effects of whole-body electromyostimulation versus high-intensity resistance exercise on body composition and strength: a randomized controlled study. Evid Based Complement Alternat Med. 2016:9236809

    Article  PubMed  PubMed Central  Google Scholar 

  104. Zink-Rückel C, Chaudry O, Engelke K, Ghasemikaram M, Kohl M, Uder M et al (2021) Once weekly whole-body electromyostimulation enhances muscle quality in men: data of the randomized controlled franconian electromyostimulation and golf study. Front Physiol 12:700423

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kemmler W, Grimm A, Bebenek M, Kohl M, von Stengel S (2018) Effects of combined whole-body electromyostimulation and protein supplementation on local and overall muscle/fat distribution in older men with sarcopenic obesity: the randomized controlled franconia sarcopenic obesity (FranSO) Study. Calcif Tissue Int 103(3):266–277

    Article  CAS  PubMed  Google Scholar 

  106. Pano-Rodriguez A, Beltran-Garrido JV, Hernandez-Gonzalez V, Nasarre-Nacenta N, Reverter-Masia J (2020) Impact of whole body electromyostimulation on velocity, power and body composition in postmenopausal women: a randomized controlled trial. Int J Environ Res Public Health 17(14):4982

    Article  PubMed  PubMed Central  Google Scholar 

  107. Nosaka K, Aldayel A, Jubeau M, Chen TC (2011) Muscle damage induced by electrical stimulation. Eur J Appl Physiol 111(10):2427–2437

    Article  PubMed  Google Scholar 

  108. Stöllberger C, Finsterer J (2019) Side effects of and contraindications for whole-body electro-myo-stimulation: a viewpoint. BMJ Open Sport Exerc Med 5(1):e000619

    Article  PubMed  PubMed Central  Google Scholar 

  109. Koutna N (2006) GHC Clinic Prague, Czech Republic Summary: basic information about carboxytherapy and its new use in non-invasive aesthetic medicine and in dermatology are presented in the article. Cas Lek Cesk. 145:841–843

    CAS  PubMed  Google Scholar 

  110. Eldsouky F, Ebrahim HM (2018) Evaluation and efficacy of carbon dioxide therapy (carboxytherapy) versus mesolipolysis in the treatment of cellulite. J Cosmet Laser Ther 20(5):307–312

    Article  PubMed  Google Scholar 

  111. Pianez LR, Custódio FS, Guidi RM, de Freitas JN, Sant’Ana E (2016) Effectiveness of carboxytherapy in the treatment of cellulite in healthy women: a pilot study. Clin Cosmet Investig Dermatol 9:183–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sadala AY, Machado AF, Liebano RE (2018) Effects of transcutaneous electrical nerve stimulation on pain intensity during application of carboxytherapy in patients with cellulite: a randomized placebo-controlled trial. J Cosmet Dermatol 17(6):1175–1181

    Article  PubMed  Google Scholar 

  113. Alam M, Sadhwani D, Geisler A, Aslam I, Makin IRS, Schlessinger DI et al (2018) Subcutaneous infiltration of carbon dioxide (carboxytherapy) for abdominal fat reduction: a randomized clinical trial. J Am Acad Dermatol 79(2):320–326

    Article  CAS  PubMed  Google Scholar 

  114. Farag AGA, Maraee AH, Zytoon AA, Shehata WA, Essa S (2019) Role of carboxytherapy in localized lipolysis: a clinical and radiological study. Journal of the Egyptian Women’s Dermatologic Society. 16:170–178

    Article  Google Scholar 

  115. Maraee AH, Farag AG, Zytoon AA, Essa SA (2020) Evaluate the efficacy of carboxytherapy for localized lipolysis in a sample of Egyptian patients. Menoufia Medical Journal. 33(3):1045

    Google Scholar 

  116. Oliveira SMD, Rocha LB, da Cunha MTR, Cintra MMM, Pinheiro NM, Mendonça AC (2020) Effects of carboxytherapy on skin laxity. J Cosmet Dermatol 19(11):3007–3013

    Article  PubMed  Google Scholar 

  117. Brandi C, D’Aniello C, Grimaldi L, Bosi B, Dei I, Lattarulo P et al (2001) Carbon dioxide therapy in the treatment of localized adiposities: clinical study and histopathological correlations. Aesthetic Plast Surg 25(3):170–174

    Article  CAS  PubMed  Google Scholar 

  118. Koutná N (2006) Carboxytherapy in aesthetic dermatology-experiences after the treatment of 280 patients. Cas Lek Cesk. 145(11):841

    PubMed  Google Scholar 

  119. Zelenková H (2019) Carboxytherapy: non-invasive method in dermatology and some other branches of medicine. Acta Scientific Medical Sciences. 3(5):42–48

    Google Scholar 

  120. Balik O, Yilmaz M, Bagriyanik A (2011) Does carbon dioxide therapy really diminish localized adiposities? experimental study with rats. Aesthetic Plast Surg 35(4):470–474

    Article  PubMed  Google Scholar 

  121. Park JH, Wee SY, Chang J, Hong S, Lee JH, Cho KW et al (2018) Carboxytherapy-induced fat loss is associated with VEGF-mediated vascularization. Aesthetic Plast Surg 42(6):1681–1688

    Article  PubMed  Google Scholar 

  122. Ferreira JCT, Haddad A, Tavares SAN (2008) Increase in collagen turnover induced by intradermal injection of carbon dioxide in rats. J Drugs Dermatol 7(3):201–206

    PubMed  Google Scholar 

  123. Costa CS, Otoch JP, Seelaender MCL, Neves RX, Martinez CAR, Margarido NF (2011) Cytometric evaluation of abdominal subcutaneous adipocytes after percutaneous CO2 infiltration. Rev Col Bras Cir 38:15–23

    Article  PubMed  Google Scholar 

  124. Lee GS (2016) Quality survey on efficacy of carboxytherapy for localized lipolysis. J Cosmet Dermatol 15(4):484–492

    Article  PubMed  Google Scholar 

  125. Sadala AY, Rampazo-da-Silva ÉP, Liebano RE (2020) Electroanalgesia during a carboxytherapy procedure for cellulite: a study protocol for a randomized controlled trial. Pain Management 10(5):283–90

    Article  PubMed  Google Scholar 

  126. Brandi C, D’Aniello C, Grimaldi L, Caiazzo E, Stanghellini E (2004) Carbon dioxide therapy: effects on skin irregularity and its use as a complement to liposuction. Aesthetic Plast Surg 28(4):222–225

    Article  PubMed  Google Scholar 

  127. Alam M, Voravutinon N, Reynolds KA, Poon E (2020) Safety of subcutaneous infiltration of carbon dioxide (carboxytherapy) for abdominal fat reduction: a pilot Study. Dermatol Surg 46(9):1249–1250

    Article  CAS  PubMed  Google Scholar 

  128. Bastos GR, Nogueira APS (2020) Os Benefícios da Carboxiterapia no Tratamento da Adiposidade Abdominal: Uma Revisão Integrativa. Id Online Revista Multidisciplinar e de Psicologia. 11(51):157–167

    Article  Google Scholar 

  129. Boldrin LSC, Cabral FD, Nogueira LSV, Cabral RSC (2022) Carboxiterapia: desafios e possibilidades Carboxytherapy: challenges and possibilities. Brazilian Journal of Development. 8(5):37434–37445

    Article  Google Scholar 

  130. Sinyakova O, Drogovoz S, Kononenko A (2015) Carboxytherapy indications, possible side effects and contraindications for it

  131. Couderc C, Carbonne A, Thiolet J, Brossier F, Savey A, Bernet C et al (2011) Infections à mycobactéries atypiques liées à des soins esthétiques en France, 2001–2010. Med Mal Infect 41(7):379–383

    Article  CAS  PubMed  Google Scholar 

  132. Calonge WM, Lesbros-Pantoflickova D, Hodina M, Elias B (2013) Massive subcutaneous emphysema after carbon dioxide mesotherapy. Aesthetic Plast Surg 37(1):194–197

    Article  PubMed  Google Scholar 

  133. Armenta GA, Mesa SF, Jiménez C (2018) Comparative efficiency of intralipotherapy with sodium deoxycholate alone and alternated with carboxytherapy in body non-surgical contouring treatments of the trochanteric region. Aesthetic Medicine 4(2):25–32

  134. Rotunda AM, Kolodney MS (2006) Mesotherapy and phosphatidylcholine injections: historical clarification and review. Dermatol Surg 32(4):465–480

    CAS  PubMed  Google Scholar 

  135. Bernlohr DA, Jenkins AE, Bennaars AA. Adipose tissue and lipid metabolism. New Comprehensive Biochemistry 36:263–89

  136. Zanaboni L, Bonfiglioli D, Sommariva D, D’Adda D, Fasoli A (1981) Increase in lipolysis and decrease in plasma-heparin lipoprotein lipase activity and alpha 1 lipoprotein level after aminophylline in man. Eur J Clin Pharmacol 19:349–351

    Article  CAS  PubMed  Google Scholar 

  137. Clissold SP, Lynch S, Sorkin EM (1987) Buflomedil: A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in peripheral and cerebral vascular diseases. Drugs 33:430–460

    Article  CAS  PubMed  Google Scholar 

  138. Matarasso A, Pfeifer TM, Committee PSEFD (2005) Mesotherapy for body contouring. Plast Reconstr Surg 115(5):1420–4

    Article  CAS  PubMed  Google Scholar 

  139. Sarkar R, Garg VK, Mysore V (2011) Position paper on mesotherapy. Indian J Dermatol Venereol Leprol 77:232

    Article  PubMed  Google Scholar 

  140. FDA (2015) Highlights of prescribing information-Kybella. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/206333Orig1s000Approv.pdf.

  141. FDA (2018) Human drug compounding. https://www.fda.gov/drugs/guidancecomplianceregulatoryinformation/pharmacycompounding/.

  142. Ascher B, Hoffmann K, Walker P, Lippert S, Wollina U, Havlickova B (2014) Efficacy, patient-reported outcomes and safety profile of ATX-101 (deoxycholic acid), an injectable drug for the reduction of unwanted submental fat: Results from a phase III, randomized, placebo-controlled study. J Eur Acad Dermatol Venereol 28(12):1707–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Rzany B, Griffiths T, Walker P, Lippert S, McDiarmid J, Havlickova B (2014) Reduction of unwanted submental fat with ATX-101 (deoxycholic acid), an adipocytolytic injectable treatment: results from a phase III, randomized, placebo-controlled study. Br J Dermatol 170(2):445–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Jones DH, Carruthers J, Joseph JH, Callender VD, Walker P, Lee DR et al (2016) REFINE-1, a multicenter, randomized, double-blind, placebo-controlled, phase 3 trial with ATX-101, an injectable drug for submental fat reduction. Dermatol Surg 42(1):38–49

    Article  CAS  PubMed  Google Scholar 

  145. Rotunda AM, Weiss SR, Rivkin LS (2009) Randomized double-blind clinical trial of subcutaneously injected deoxycholate versus a phosphatidylcholine–deoxycholate combination for the reduction of submental fat. Dermatol Surg 35(5):792–803

    Article  CAS  PubMed  Google Scholar 

  146. Reeds DN, Mohammed BS, Klein S, Boswell CB, Young VL (2013) Metabolic and structural effects of phosphatidylcholine and deoxycholate injections on subcutaneous fat: a randomized, controlled trial. Aesthetic Surg J 33(3):400–408

    Article  Google Scholar 

  147. Plachouri KM, Georgiou S (2019) Mesotherapy: safety profile and management of complications. J Cosmet Dermatol 18(6):1601–1605

    Article  PubMed  Google Scholar 

  148. Park SH, Kim DW, Lee MA, Yoo SC, Rhee SC, Koo SH et al (2008) Effectiveness of mesotherapy on body contouring. Plast Reconstr Surg 121(4):179e-e185

    Article  CAS  PubMed  Google Scholar 

  149. Kutlubay Z (2011) Evaluation of mesotherapeutic injections of three different combinations of lipolytic agents for body contouring. J Cosmet Laser Ther 13(4):142–153

    Article  PubMed  Google Scholar 

  150. Salti G, Ghersetich I, Tantussi F, Bovani B, Lotti T (2008) Phosphatidylcholine and sodium deoxycholate in the treatment of localized fat: a double-blind, randomized study. Dermatol Surg 34(1):60–66

    Article  CAS  PubMed  Google Scholar 

  151. Guedes RP (2003) The use of phosphatidylcholine for correction of localized fat deposits. Aesthetic Plast Surg 27(4):315–318

    Article  Google Scholar 

  152. Kim J-T, Choi A, Jeong J-H, Jo J-H, Ryu O-S, Kim E-J et al (2018) Safety evaluation and consideration of 4 Pin Multi-needle for meso-therapy. Technol Health Care 26(S1):291–306

    Article  PubMed  PubMed Central  Google Scholar 

  153. Centers for Disease Control and Prevention (2005) Outbreak of mesotherapy-associated skin reactions--District of Columbia area, January-February 2005. MMWR Morbidity and Mortality Weekly Report 54(44):1127–30

  154. Munayco CV, Grijalva CG, Culqui DR, Bolarte JL, Suárez-Ognio LA, Quispe N et al (2008) Outbreak of persistent cutaneous abscesses due to Mycobacterium chelonae after mesotherapy sessions, Lima. Peru. Revista de saude publica. 42:146–149

    Article  PubMed  Google Scholar 

  155. Sañudo A, Vallejo F, Sierra M, Hoyos JG, Yepes S, Wolff JC et al (2007) Nontuberculous mycobacteria infection after mesotherapy: preliminary report of 15 cases. Int J Dermatol 46(6):649–653

    Article  PubMed  Google Scholar 

  156. Davis MD, Wright TI, Shehan JM (2008) A complication of mesotherapy: noninfectious granulomatous panniculitis. Arch Dermatol 144(6):808–809

    Article  PubMed  Google Scholar 

  157. Chen J, Chen D, Ren Q, Zhu W, Xu S, Lu L et al (2020) Acupuncture and related techniques for obesity and cardiovascular risk factors: a systematic review and meta-regression analysis. Acupunct Med 38(4):227–234

    Article  PubMed  Google Scholar 

  158. Junpeng Y, Chen L, Zheng H, Zhang L, Li Y (2020) Effect of warm-needling acupuncture in overweight and obese adults: protocol for a systematic review and meta-analysis. Research Square

  159. Chon TY, Mallory MJ, Yang J, Bublitz SE, Do A, Dorsher PT (2019) Laser acupuncture: a concise review. Med Acupunct. 31(3):164–168

    Article  PubMed  PubMed Central  Google Scholar 

  160. Jabbari A, Tabasi S, Masrour-Roudsari J (2019) Western medical acupuncture is an alternative medicine or a conventional classic medical manipulation. Caspian J Intern Med 10(2):239–240

    PubMed  PubMed Central  Google Scholar 

  161. Cho S, Lee J, Thabane L, Lee J (2009) Acupuncture for obesity: a systematic review and meta-analysis. Int J Obes 33(2):183–196

    Article  CAS  Google Scholar 

  162. Abou Ismail LA, Ibrahim AA, Abdel-Latif GA, Abd El-Haleem DA, Helmy G, Labib LM et al (2015) Effect of acupuncture on body weight reduction and inflammatory mediators in Egyptian obese patients. Open Access Macedonian Journal of Medical Sciences. 3(1):85

    Article  Google Scholar 

  163. Zhong Y-M, Luo X-C, Chen Y, Lai D-L, Lu W-T, Shang Y-N et al (2020) Acupuncture versus sham acupuncture for simple obesity: a systematic review and meta-analysis. Postgrad Med J 96(1134):221–227

    Article  PubMed  Google Scholar 

  164. Chen J, Shergis JL, Guo X, Zhang AL, Wang H, Lu C, et al (2022) Acupuncture therapies for individuals with overweight or obesity: an overview of systematic reviews. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 15:1651-66

  165. Abdi H, Ghaffarian-Zirak R, Barati E, Ghazizadeh H, Rohban M, Ghayour-Mobarhan M (2020) Effect of body and ear acupuncture on obesity. Obesity Medicine. 19:100257

    Article  Google Scholar 

  166. Xu B, Liu Z, Yuan J, Mao Z, Shao Q, Wang X (2007) Methods and efficacy of acupuncture for regulating body weight in different populations. Journal of Acupuncture and Tuina Science. 5:97–102

    Article  Google Scholar 

  167. Kim SY, Shin IS, Park YJ (2018) Effect of acupuncture and intervention types on weight loss: a systematic review and meta-analysis. Obes Rev 19(11):1585–1596

    Article  PubMed  Google Scholar 

  168. Yao J, He Z, Chen Y, Xu M, Shi Y, Zhang L, et al (2019) Acupuncture and weight loss in Asians: A PRISMA-compliant systematic review and meta-analysis. Medicine 98(33)

  169. dos Santos-Maciel LY, dos Santos-Leite PM, Neto MLP, Mendonça ACR, de Araujo CCA, da Hora-Santos-Souza J et al (2016) Comparison of the placebo effect between different non-penetrating acupuncture devices and real acupuncture in healthy subjects: a randomized clinical trial. BMC Complement Altern Med 16(1):518

    Article  PubMed  PubMed Central  Google Scholar 

  170. Kargozar R, Salari R, Jarahi L, Yousefi M, Pourhoseini SA, Sahebkar-Khorasani M et al (2019) Urtica dioica in comparison with placebo and acupuncture: a new possibility for menopausal hot flashes: a randomized clinical trial. Complement Ther Med 44:166–173

    Article  PubMed  Google Scholar 

  171. Zhang Y, Li J, Mo G, Liu J, Yang H, Chen X, et al (2018) Acupuncture and related therapies for obesity: a network meta-analysis. Evid Based Complement Alternat Med 2018:9569685

  172. Pangestu U, Dewi YLR, Prasetya H (2021) The effect of ear acupuncture in reducing body weight in obesity patients: a meta-analysis. Indonesian Journal of Medicine. 6(1):23–31

    Article  Google Scholar 

  173. de Matos DT, Santos MJ, Moreira A, Machado J, Vieira A (2021) Weight and abdominal adiposity loss with auricular acupuncture—a randomized controlled trial. J Exp Pathol 2(3):105–116

    Google Scholar 

  174. Cao C, Wang J, Liao J, Zhang J, Qiao Y, Liu J, et al (1998) Preliminary study on weight reduction of obesity patients with semiconductor laser acupuncture. Proc. SPIE 3548, Biomedical Optics and Lasers: Diagnostics and Treatment

  175. Hu W-L, Chang C-H, Hung Y-C (2010) Clinical observations on laser acupuncture in simple obesity therapy. Am J Chin Med 38(05):861–867

    Article  PubMed  Google Scholar 

  176. Hung Y-C, Hung I-L, Hu W-L, Tseng Y-J, Kuo C-E, Liao Y-N, et al (2016) Reduction in postpartum weight with laser acupuncture: a randomized control trial. Medicine 95(34):e4716

  177. Namazi N, Khodamoradi K, Larijani B, Ayati MH (2017) Is laser acupuncture an effective complementary therapy for obesity management? A systematic review of clinical trials. Acupunct Med 35(6):452–459

    Article  PubMed  Google Scholar 

  178. Sebayang RG, Aditya C, Abdurrohim K, Lauwrence B, Mihardja H, Kresnawan T et al (2020) Effects of laser acupuncture and dietary intervention on key obesity parameters. Medical Acupuncture. 32(2):108–115

    Article  PubMed  PubMed Central  Google Scholar 

  179. Yang J, Mallory MJ, Wu Q, Bublitz SE, Do A, Xiong D et al (2020) The safety of laser acupuncture: a systematic review. Medical Acupuncture. 32(4):209–217

    Article  PubMed  PubMed Central  Google Scholar 

  180. Sheng J, Jin X, Zhu J, Chen Y, Liu X (2019) The effectiveness of acupoint catgut embedding therapy for abdominal obesity: a systematic review and meta-analysis. Evid Based Complement Alternat Med: 2019:9714313

  181. Huang C-Y, Choong M-Y, Li T-S (2012) Treatment of obesity by catgut embedding: an evidence-based systematic analysis. Acupunct Med 30(3):233

    Article  PubMed  Google Scholar 

  182. Chen I-J, Yeh Y-H, Hsu C-H (2018) Therapeutic effect of acupoint catgut embedding in abdominally obese women: a randomized, double-blind, placebo-controlled study. J Womens Health 27(6):782–790

    Article  Google Scholar 

  183. ZC. Z, WB. F (2006) Therapeutic effects of 30 cases of simple obesity treated with acupoint catgut embedding therapy. Shaanxi J Traditional Chinese Med 26.

  184. Guo T, Ren Y, Kou J, Shi J, Tianxiao S, Liang F (2015) Acupoint catgut embedding for obesity: systematic review and meta-analysis. Evid Based Complement Alternat Med 2015:401914

  185. Lin C-H, Lin Y-M, Liu C-F (2010) Electrical acupoint stimulation changes body composition and the meridian systems in postmenopausal women with obesity. Am J Chin Med 38(04):683–694

    Article  PubMed  Google Scholar 

  186. Santos RV, Rodrigues JM, Jesus MI (2020) Review on the effects of obesity treatment with acupuncture and phytoacupuncture. World Journal of Acupuncture-Moxibustion. 30(3):223–228

    Article  Google Scholar 

  187. Wang L-H, Huang W, Wei D, Ding D-G, Liu Y-R, Wang J-J, et al (2019) Mechanisms of acupuncture therapy for simple obesity: an evidence-based review of clinical and animal studies on simple obesity. Evid Based Complement Alternat Med 2019:5796381

  188. Güçel F, Bahar B, Demirtas C, Mit S, Çevik C (2012) Influence of acupuncture on leptin, ghrelin, insulin and cholecystokinin in obese women: a randomised, sham-controlled preliminary trial. Acupunct Med 30(3):203–207

    Article  PubMed  Google Scholar 

  189. Kim E-H, Kim Y, Jang M-H, Lim B-V, Kim Y-J, Chung J-H et al (2001) Auricular acupuncture decreases neuropeptide Y expression in the hypothalamus of food-deprived Sprague-Dawley rats. Neurosci Lett 307(2):113–116

    Article  CAS  PubMed  Google Scholar 

  190. Guo Y, Xing M, Sun W, Yuan X, Dai H, Ding H (2014) Plasma nesfatin-1 level in obese patients after acupuncture: a randomised controlled trial. Acupunct Med 32(4):313–317

    Article  PubMed  Google Scholar 

  191. Wang F, Tian D-R, Han J-S (2008) Electroacupuncture in the treatment of obesity. Neurochem Res 33:2023–2027

    Article  CAS  PubMed  Google Scholar 

  192. Hsu C-H, Wang C-J, Hwang K-C, Lee T-Y, Chou P, Chang H-H (2009) The effect of auricular acupuncture in obese women: a randomized controlled trial. J Womens Health 18(6):813–818

    Article  Google Scholar 

  193. Liu Z, Wang Y, Hu K, Li J, Shi X, Sun F (1995) Good regulation of acupuncture in simple obesity patients with stomach-intestine excessive heat type. Chinese Journal of Integrated Traditional and Western Medicine. 1:267–71

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Alizadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to disclose. All of the brands of devices which were mentioned in the text were selected based on research papers.

Human and Animal Rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

For this type of study, informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alizadeh, Z., Halabchi, F., Bodaghabadi, Z. et al. Non-invasive Body Contouring Technologies: An Updated Narrative Review. Aesth Plast Surg 48, 659–679 (2024). https://doi.org/10.1007/s00266-023-03647-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00266-023-03647-x

Keywords

Navigation