Skip to main content
Log in

Old male sex: large ejaculate, many sperm, but few offspring

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Reproduction induces non-trivial costs, such that both males and females should choose their mates carefully and invest their resources prudently. Male performance and thus their investment into ejaculates are often predicted to decrease with age and mating frequency, which may in turn negatively affect female fitness and thus feedback on the attractiveness of old males. Such reproductive senescence may be mediated by changes in the males’ oxidative status. Here, we investigated the effects of male mating frequency and age on male reproduction and oxidative status, and the respective consequences for female reproduction. We used the tropical butterfly Bicyclus anynana, in which counterintuitively older males have a higher mating success than younger ones. In once-mated males, spermatophore mass and sperm numbers strongly increased with age, while antioxidant defences and oxidative damage declined with age. In repeatedly mated males, spermatophore mass and sperm number showed little variation being similar to young once-mated males, while antioxidant defences increased and oxidative damage decreased with mating frequency. Female reproductive success was highest when mating with young once-mated males, although these produced small spermatophores with low sperm numbers. Our findings suggest that in B. anynana, (1) ejaculate size and sperm number are not reliable proxies of male quality, (2) ejaculate quality diminishes with age and mating number, and that (3) old male mating advantage likely results from sexual conflict owing negative effects on female fitness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aitken RJ, Smith TB, Jobling MS et al (2014) Oxidative stress and male reproductive health. Asian J Androl 16:31–38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arnqvist G, Nilsson T (2000) The evolution of polyandry: multiple mating and female fitness in insects. Anim Behav 60:145–164

    Article  PubMed  Google Scholar 

  • Bateman A (1948) Intra-sexual selection in Drosophila. Heredity 2:349–368

    Article  CAS  PubMed  Google Scholar 

  • Begon M, Parker GA (1986) Should egg size and clutch size decrease with age? Oikos 47:293–302

    Article  Google Scholar 

  • Birkhead TR (1991) Sperm depletion in the Bengalese finch, Lonchura striata. Behav Ecol 2:267–275

    Article  Google Scholar 

  • Bissoondath CJ, Wiklund C (1996) Effect of male mating history and body size on ejaculate size and quality in two polyandrous butterflies, Pieris napi and Pieris rapae (Lepidoptera: Peridae). Funct Ecol 10:457–464

    Article  Google Scholar 

  • Bize PB, Devevey G, Monaghan P et al (2008) Fecundity and survival in relation to resistance to oxidative stress in a free-living bird. Ecology 89:2584–2593

    Article  PubMed  Google Scholar 

  • Boggs CL (1997) Dynamics of reproductive allocation from juvenile and adult feeding: radiotracer studies. Ecology 78:192–202

    Article  Google Scholar 

  • Boggs CL, Freeman KD (2005) Larval food limitation in butterflies: effects on adult resource allocation and fitness. Oecologia 144:353–361

    Article  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Chem 72:248–254

    CAS  Google Scholar 

  • Brakefield PM (1997) Phenotypic plasticity and fluctuating asymmetry as response to environmental stress in the butterfly Bicyclus anynana. In: Bijlsma R, Loeschke V (eds) Environmental stress, adaptation and evolution: an overview. Birkhäuser, Basel, pp 65–78

    Chapter  Google Scholar 

  • Brakefield PM, Reitsma N (1991) Phenotypic plasticity, seasonal climate and the population biology of Bicyclus butterflies (Satyridae) in Malawi. Ecol Entomol 16:291–303

    Article  Google Scholar 

  • Brakefield PM, El Filali E, der Laan R et al (2001) Effective population size, reproductive success and sperm precedence in the butterfly Bicyclus anynana, in captivity. J Evol Biol 14:148–156

    Article  Google Scholar 

  • Caballero-Mendieta N, Cordero C (2013) Male mating costs in a butterfly that produces small ejaculates. Physiol Entomol 38:318–325

    Article  Google Scholar 

  • Chapman T, Miyatake T, Smith HK, Partridge L (1998) Interactions of mating, egg production and death rates in females of the Mediterranean fruit fly, Ceratitis capitata. Proc R Soc Lond B Biol Sci 265:1879–1894

    Article  CAS  Google Scholar 

  • Cook PA, Wedell N (1996) Ejaculate dynamics in butterflies: a strategy for maximizing fertilization success? Proc R Soc Lond B Biol Sci 263:1047–1051

    Article  Google Scholar 

  • Cook PA, Wedell N (1999) Non-fertile sperm delay female remating. Nature 397:486

    Article  CAS  Google Scholar 

  • Costantini D, Monaghan P, Metcalfe NB (2012) Early life experience primes resistance to oxidative stress. J Exp Biol 215:2820–2826

    Article  PubMed  Google Scholar 

  • Costantini D, Casasole G, Eens M (2014a) Does reproduction protect against oxidative stress? J Exp Biol 217:4237–4243

    Article  PubMed  Google Scholar 

  • Costantini D, Monaghan P, Metcalfe NB (2014b) Prior hormetic priming is costly under environmental mismatch. Biol Lett 10:20131010

    Article  PubMed Central  PubMed  Google Scholar 

  • Criscuolo F, Font-Sala C, Bouillaud F et al (2010) Increased ROS production: a component of the longevity equation in the male mygalomorph, Brachypelma albopilosa. PLoS One 5, e13104

    Article  PubMed Central  PubMed  Google Scholar 

  • Damiens D, Boivin G (2006) Why do sperm-depleted parasitoid males continue to mate? Behav Ecol 17:138–143

    Article  Google Scholar 

  • Ferkau C, Fischer K (2006) Costs of reproduction in male Bicyclus anynana and Pieris napi butterflies: effects of mating history and food limitation. Ethology 112:1117–1127

    Article  Google Scholar 

  • Fischer K (2007) Control of female reproduction and a survival cost to mating in a butterfly. Ecol Entomol 32:674–681

    Article  Google Scholar 

  • Fischer K, Perlick J, Galetz T (2008) Residual reproductive value and male mating success: older males do better. Proc R Soc Lond B Biol Sci 275:1517–1524

    Article  Google Scholar 

  • Ford WCL (2000) Increasing paternal age is associated with delayed conception in a large population of fertile couples: evidence for declining fecundity in older men. Hum Reprod 15:1703–1708

    Article  CAS  PubMed  Google Scholar 

  • Fowler K, Partridge L (1989) A cost of mating in female fruitflies. Nature 338:760–761

    Article  Google Scholar 

  • Fricke C, Maklakov AA (2007) Male age does not affect female fitness in a polyandrous beetle, Callosobruchus maculatus. Anim Behav 74:541–548

    Article  Google Scholar 

  • Garratt M, Pichaud N, King EDA, Brooks RC (2013) Physiological adaptations to reproduction. I Experimentally increasing litter size enhances aspects of antioxidant defence but does not cause oxidative damage in mice. J Exp Biol 216:2879–2888

    Article  CAS  PubMed  Google Scholar 

  • Harshman LG, Zera AJ (2007) The cost of reproduction: the devil in the details. Trends Ecol Evol 22:80–86

    Article  PubMed  Google Scholar 

  • Heinze J, Hölldobler B (1993) Fighting for a harem of queens: physiology of reproduction in Cardiocondyla male ants. Proc Natl Acad Sci 90:8412–8414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Helfenstein F, Losdat S, Møller AP et al (2010) Sperm of colourful males are better protected against oxidative stress. Ecol Lett 13:213–222

    Article  PubMed  Google Scholar 

  • Janowitz SA, Fischer K (2010) Costing reproduction: effects of mating opportunity on mating success in male Bicyclus anynana butterflies. Behav Ecol Sociobiol 64:1999–2006

    Article  Google Scholar 

  • Janowitz SA, Fischer K (2012) Polyandry in Bicyclus anynana butterflies results from sexual conflict over mating. Ethology 118:1140–1148

    Article  Google Scholar 

  • Jervis MA, Boggs CL, Ferns PN (2005) Egg maturation strategy and its associated trade-offs: a synthesis focusing on Lepidoptera. Ecol Entomol 30:359–375

    Article  Google Scholar 

  • Jones TM, Balmford A, Quinnell RJ (2000) Adaptive female choice for middle-aged mates in a lekking sandfly. Proc R Soc Lond B Biol Sci 267:681–686

    Article  CAS  Google Scholar 

  • Kaitala A, Wiklund C (1995) Female mate choice and mating costs in the polyandrous butterfly Pieris napi. J Insect Behav 8:355–363

    Article  Google Scholar 

  • Karl I, Fischer K (2013) Old male mating advantage results from sexual conflict in a butterfly. Anim Behav 85:143–149

    Article  Google Scholar 

  • Karl I, Heuskin S, Fischer K (2013) Dissecting the mechanisms underlying old male mating advantage in a butterfly. Behav Ecol Sociobiol 67:837–849

    Article  Google Scholar 

  • Karlsson B (1994) Feeding habits and change of body compositions with age in three nymphalid butterfly species. Oikos 69:224–230

    Article  Google Scholar 

  • Kehl T, Karl I, Fischer K (2013) Old-male paternity advantage is a function of accumulating sperm and last-male precedence in a butterfly. Mol Ecol 22:4289–4297

    Article  PubMed  Google Scholar 

  • Kehl T, Burmeister MFWT, Donke E et al (2014) Pheromone blend does not explain old male mating advantage in a butterfly. Ethology 120:1137–1145

    Article  Google Scholar 

  • Konagaya T, Watanabe M (2013) Number of sperm produced and ejaculated by male Small Yellow Eurema mandarina in summer generations. Jpn J Appl Entomol Zool 57:243–248

    Article  Google Scholar 

  • Kotiaho JS, Simmons LW (2003) Longevity cost of reproduction for males but no longevity cost of mating or courtship for females in the male-dimorphic dung beetle Onthophagus binodis. J Insect Physiol 49:817–822

    Article  CAS  PubMed  Google Scholar 

  • Kotiaho JS, Alatalo RV, Mappes J et al (1998) Energetic costs of size and sexual signalling in a wolf spider. Proc R Soc Lond B Biol Sci 265:2203–2209

    Article  Google Scholar 

  • Kovac JR, Addai J, Smith RP et al (2013) The effects of advanced paternal age on fertility. Asian J Androl 15:723–728

    Article  PubMed Central  PubMed  Google Scholar 

  • Larsdotter Mellström H, Wiklund C (2010) What affects mating rate? Polyandry is higher in the directly developing generation of the butterfly Pieris napi. Anim Behav 80:413–418

    Article  Google Scholar 

  • Larsen TB (1991) The butterflies of Kenya and their natural history. Oxford University Press

  • Lauwers K, Van Dyck H (2006) The cost of mating with a non-virgin male in a monandrous butterfly: experimental evidence from the speckled wood, Pararge aegeria. Behav Ecol Sociobiol 60:69–76

    Article  Google Scholar 

  • Lederhouse R, Ayres M, Scriber J (1990) Adult nutrition affects male virility in Papilio glaucus L. Funct Ecol 4:743–751

    Article  Google Scholar 

  • Lyytinen A, Brakefield PM, Lindström L, Mappes J (2004) Does predation maintain eyespot plasticity in Bicyclus anynana? Proc R Soc Lond B Biol Sci 271:279–283

    Article  Google Scholar 

  • Molleman F, Zwaan B, Brakefield PM (2004) The effect of male sodium diet and mating history on female reproduction in the puddling squinting bush brown Bicyclus anynana (Lepidoptera). Behav Ecol Sociobiol 56:404–411

    Article  Google Scholar 

  • Møller AP, Mousseau TA, Rudolfsen G et al (2009) Senescent sperm performance in old male birds. J Evol Biol 22:334–344

    Article  PubMed  Google Scholar 

  • Monaghan P, Metcalfe NB, Torres R (2009) Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation. Ecol Lett 12:75–92

    Article  PubMed  Google Scholar 

  • Niitepõld K, Hanski I (2013) A long life in the fast lane: positive association between peak metabolic rate and lifespan in a butterfly. J Exp Biol 216:1388–1397

    Article  PubMed  Google Scholar 

  • Niitepõld K, Perez A, Boggs CL (2014) Aging, life span, and energetics under adult dietary restriction in lepidoptera. Physiol Biochem Zool 87:684–694

    PubMed  Google Scholar 

  • Oberhauser KS (1988) Male monarch butterfly spermatophore mass and mating strategy. Anim Behav 36:1384–1388

    Article  Google Scholar 

  • Ofuya TI (1995) Multiple mating and its consequences in males of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). J Stored Prod Res 31:71–75

    Article  Google Scholar 

  • Ołdakowski Ł, Piotrowska Z, Chrzaácik KM et al (2012) Is reproduction costly? No increase of oxidative damage in breeding bank voles. J Exp Biol 215:1799–1805

    Article  PubMed  Google Scholar 

  • Parker GA (1970) Sperm competition and its evolutionary consequences in the insects. Biol Rev 45:525–567

    Article  Google Scholar 

  • Paukku S, Kotiaho JS (2005) Cost of reproduction in Callosobruchus maculatus: effects of mating on male longevity and the effect of male mating status on female longevity. J Insect Physiol 51:1220–1226

    Article  CAS  PubMed  Google Scholar 

  • Proshold FI (1991) Number of sperm bundles in the duplex of tobacco budworms (Lepidoptera: Noctuidae) as a function age. J Econ Entomol 84:1485–1491

    Article  Google Scholar 

  • Rutowski RL, Gilchrist GW, Terkanian B (1987) Female butterflies mated with recently mated males show reduced reproductive output. Behav Ecol Sociobiol 20:319–322

    Article  Google Scholar 

  • Salamon S (1962) Studies on the artificial insemination of Merino sheep. III. The effect of frequent ejaculation on semen characteristics and fertilizing capacity. Aust J Agric Res 13:1137–1150

    Article  Google Scholar 

  • Snook RR (2005) Sperm in competition: not playing by the numbers. Trends Ecol Evol 20:46–53

    Article  PubMed  Google Scholar 

  • Solensky MJ, Oberhauser KS (2009) Male monarch butterflies, Danaus plexippus, adjust ejaculates in response to intensity of sperm competition. Anim Behav 77:465–472

    Article  Google Scholar 

  • South A, Lewis SM (2011) The influence of male ejaculate quantity on female fitness: a meta-analysis. Biol Rev Camb Philos Soc 86:299–309

    Article  PubMed  Google Scholar 

  • South A, Lewis SM (2012) Effects of male ejaculate on female reproductive output and longevity in Photinus fireflies. Can J Zool 90:677–681

    Article  Google Scholar 

  • Speakman JR, Garratt M (2014) Oxidative stress as a cost of reproduction: beyond the simplistic trade-off model. BioEssays 36:93–106

    Article  PubMed  Google Scholar 

  • Srivastava S, Omkar (2004) Age-specific mating and reproductive senescence in the seven-spotted ladybird, Coccinella septempunctata. J Appl Entomol 128:452–458

    Article  Google Scholar 

  • Stier A, Reichert S, Massemin S et al (2012) Constraint and cost of oxidative stress on reproduction: correlative evidence in laboratory mice and review of the literature. Front Zool 9:37

    Article  PubMed Central  PubMed  Google Scholar 

  • Sugawara T (1979) Stretch reception in the bursa copulatrix of the butterfly, Pieris rapae crucivora, and its role in behaviour. J Comp Physiol A 130:191–199

    Article  Google Scholar 

  • Takeuchi T (2012) Costs of reproduction in males of a satyrine butterfly Lethe diana. Physiol Entomol 37:171–176

    Article  Google Scholar 

  • Tregenza T, Wedell N (1998) Benefits of multiple mates in the cricket Gryllus bimaculatus. Evolution 52:1726–1730

    Article  Google Scholar 

  • Tregenza T, Wedell N (2000) Genetic compatibility, mate choice and patterns of parentage: invited review. Mol Ecol 9:1013–1027

    Article  CAS  PubMed  Google Scholar 

  • Vahed K (1998) The function of nuptial feeding in insects: a review of empirical studies. Biol Rev 73:43–78

    Article  Google Scholar 

  • Van’t Hof AE, Zwaan BJ, Saccheri IJ et al (2005) Characterization of 28 microsatellite loci for the butterfly Bicyclus anynana. Mol Ecol Notes 5:169–172

    Article  CAS  Google Scholar 

  • Vande Velde L, Damiens D, Van Dyck H (2011) Spermatophore and sperm allocation in males of the monandrous butterfly Pararge aegeria: the female’s perspective. Ethology 117:645–654

    Article  Google Scholar 

  • Virkki N (1969) Sperm bundles and phylogenesis. Z Zellforsch Mikrosk Anat 101:13–27

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Wiklund C, Bon’no M (1998) The effect of repeated matings on sperm numbers in successive ejaculates of the cabbage white butterfly Pieris rapae (Lepidoptera: Pieridae). J Insect Behav 11:559–570

    Article  Google Scholar 

  • Wedell N (1994) Dual function of the bushcricket spermatophore. Proc R Soc Lond B Biol Sci 258:181–185

    Article  Google Scholar 

  • Wedell N (2005) Female receptivity in butterflies and moths. J Exp Biol 208:3433–3440

    Article  PubMed  Google Scholar 

  • Wedell N, Cook PA (1999) Strategic sperm allocation in the small white butterfly Pieris rapae (Lepidoptera: Pieridae). Funct Ecol 13:85–93

    Article  Google Scholar 

  • Wedell N, Karlsson B (2003) Paternal investment directly affects female reproductive effort in an insect. Proc R Soc Lond B Biol Sci 270:2065–2071

    Article  CAS  Google Scholar 

  • Wedell N, Ritchie MG (2004) Male age, mating status and nuptial gift quality in a bush-cricket. Anim Behav 67:1059–1065

    Article  Google Scholar 

  • Wedell N, Wiklund C, Bergström J (2009) Coevolution of non-fertile sperm and female receptivity in a butterfly. Biol Lett 5:678–681

    Article  PubMed Central  PubMed  Google Scholar 

  • Williams JB, Roberts SP, Elekonich MM (2008) Age and natural metabolically-intensive behavior affect oxidative stress and antioxidant mechanisms. Exp Gerontol 43:538–549

    Article  CAS  PubMed  Google Scholar 

  • Zeh JA, Zeh DW (2001) Reproductive mode and the genetic benefits of polyandry. Anim Behav 61:1051–1063

    Article  Google Scholar 

  • Zvěrina J, Pondělícková J (1988) Changes in seminal parameters of ejaculates after repeated ejaculation. Andrologia 20:52–54

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the ‘Landesgraduiertenförderung’ of Mecklenburg-Western Pomerania, Germany.

Conflict of interest

The authors of this manuscript declare to have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Kehl.

Additional information

Communicated by N. Wedell

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kehl, T., Beaulieu, M., Kehl, A. et al. Old male sex: large ejaculate, many sperm, but few offspring. Behav Ecol Sociobiol 69, 1543–1552 (2015). https://doi.org/10.1007/s00265-015-1966-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-015-1966-1

Keywords

Navigation