Skip to main content
Log in

Sperm design and variation in the New World blackbirds (Icteridae)

Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Post-copulatory sexual selection (PCSS) is thought to be one of the evolutionary forces responsible for the rapid and divergent evolution of sperm design. However, whereas in some taxa particular sperm traits are positively associated with PCSS, in other taxa, these relationships are negative, and the causes of these different patterns across taxa are poorly understood. In a comparative study using New World blackbirds (Icteridae), we tested whether sperm design was influenced by the level of PCSS and found significant positive associations with the level of PCSS for all sperm components but head length. Additionally, whereas the absolute length of sperm components increased, their variation declined with the intensity of PCSS, indicating stabilising selection around an optimal sperm design. Given the diversity of, and strong selection on, sperm design, it seems likely that sperm phenotype may influence sperm velocity within species. However, in contrast to other recent studies of passerine birds, but consistent with several other studies, we found no significant link between sperm design and velocity, using four different species that vary both in sperm design and PCSS. Potential reasons for this discrepancy between studies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson MJ, Dixson AF (2002) Motility and the midpiece in primates. Nature 416:496

    Article  PubMed  CAS  Google Scholar 

  • Arnqvist G (1997) The evolution of animal genitalia: distinguishing between hypotheses by single species studies. Biol J Linn Soc 60:365–379

    Article  Google Scholar 

  • Balshine S, Leach BJ, Neat F, Werner NY, Montgomerie R (2001) Sperm size of African cichlids in relation to sperm competition. Behav Ecol 12:726–731

    Article  Google Scholar 

  • Beatty RA (1970) The genetics of the mammalian gamete. Biol Rev 45:73–119

    Article  PubMed  CAS  Google Scholar 

  • Beatty RA (1972) The genetics of size and shape of spermatozoan organelles. In: Glueckson-Waelsch S (ed) The genetics of the spermatozoa. Edinburgh University Press, Edinburgh, pp 97–115

    Google Scholar 

  • Birkhead TR, Martínez JG, Burke T, Froman DP (1999) Sperm mobility determines the outcome of sperm competition in the domestic fowl. Proc R Soc Lond B 266:1759–1764

    Article  CAS  Google Scholar 

  • Birkhead TR, Pellatt EJ, Brekke P, Yeates R, Castillo-Juarez H (2005) Genetic effects on sperm design in the zebra finch. Nature 434:383–387

    Article  PubMed  CAS  Google Scholar 

  • Briskie JV, Montgomerie R (1992) Sperm size and sperm competition in birds. Proc R Soc Lond B 247:89–95

    Article  CAS  Google Scholar 

  • Briskie JV, Montgomerie R, Birkhead TR (1997) The evolution of sperm size in birds. Evolution 51:937–945

    Article  Google Scholar 

  • Burness G, Casselman SJ, Schulte-Hostedde AI, Moyes CD, Montgomerie R (2004) Sperm swimming speed and energetics vary with sperm competition risk in bluegill (Lepomis macrochirus). Behav Ecol Sociobiol 56:65–70

    Article  Google Scholar 

  • Burrows WH, Quinn JP (1937) The collection of spermatozoa from domestic fowl and turkey. Poult Sci 16:19–24

    Google Scholar 

  • Byrne PG, Simmons LW, Roberts JD (2003) Sperm competition and the evolution of gamete morphology in frogs. Proc R Soc Lond B 270:2079–2086

    Article  Google Scholar 

  • Calhim S, Birkhead TR (2007) Testes size in birds: quality versus quantity—assumptions, errors, and estimates. Behav Ecol 18:271–275

    Article  Google Scholar 

  • Calhim S, Immler S, Birkhead TR (2007) Postcopulatory sexual selection is associated with reduced variation in sperm morphology. PLoS ONE 2:e413. doi:10.1371/journal.pone.0000413

    Article  PubMed  Google Scholar 

  • Cardullo RA, Baltz JM (1991) Metabolic regulation in mammalian sperm: mitochondrial volume determines sperm length and flagellar beat frequency. Cell Motil Cytoskelet 19:180–188

    Article  CAS  Google Scholar 

  • Cohen J (1977) Reproduction. Butterworths, London, UK

    Google Scholar 

  • Cornwallis CK, Birkhead TR (2007) Changes in sperm quality and numbers in response to experimental manipulation of male social status and female attractiveness. Am Nat 170:758–770

    Article  PubMed  Google Scholar 

  • Dybas LK, Dybas HS (1981) Coadaptation and taxonomic differentiation of sperm and spermathecae in featherwing beetles. Evolution 35:168–174

    Article  Google Scholar 

  • Eberhard WG (1991) Copulatory courtship and cryptic female choice in insects. Biol Rev 66:1–31

    Article  Google Scholar 

  • Eberhard WG (1996) Female control: sexual selection by cryptic female choice. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Fitzpatrick JL, Desjardins JK, Milligan N, Montgomerie R, Balshine S (2007) Reproductive-tactic-specific variation in sperm swimming speeds in a shell-brooding cichlid. Biol Reprod 77:280–824

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick JL, Montgomerie R, Desjardins JK, Stiver KA, Kolm N, Balshine S (2009) Female promiscuity promotes the evolution of faster sperm in cichlid fishes. Proc Natl Acad Sci U S A 106:1128–1132

    Article  PubMed  CAS  Google Scholar 

  • Franzén Å (1970) Phylogenetic aspects of the morphology of spermatozoa and spermiogenesis. In: Baccetti B (ed) Comparative spermatology. Academic Press, New York, pp 29–45

    Google Scholar 

  • Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetic analysis and comparative data: a test and review of evidence. Am Nat 160:712–726

    Article  PubMed  CAS  Google Scholar 

  • Froman DP, Feltmann AJ (1998) Sperm mobility: a quantitative trait of the domestic fowl (Gallus domesticus). Biol Reprod 58:379–384

    Article  PubMed  CAS  Google Scholar 

  • Gage MJG (1994) Associations between body size, mating pattern, testis size and sperm lengths across butterflies. Proc R Soc Lond B 258:247–254

    Article  Google Scholar 

  • Gage MJG, Freckleton RP (2003) Relative testis size and sperm morphometry across mammals: no evidence for an association between sperm competition and sperm length. Proc R Soc Lond B 270:625–632

    Article  Google Scholar 

  • Gage MJG, Macfarlane C, Yeates S, Shackleton R, Parker GA (2002) Relationships between sperm morphometry and sperm motility in the Atlantic salmon. J Fish Biol 61:1528–1539

    Article  Google Scholar 

  • Gage MJG, Macfarlane CP, Yeates S, Ward RG, Searle JB, Parker GA (2004) Spermatozoal traits and sperm competition in Atlantic salmon: relative sperm velocity is the primary determinant of fertilization success. Curr Biol 14:44–47

    PubMed  CAS  Google Scholar 

  • Garamszegi LZ, Møller AP (2007) Prevalence of avian influenza and host ecology. Proc R Soc Lond B 274:2003–2012

    Article  Google Scholar 

  • García-Berthou E (2001) On the misuse of residuals in ecology: testing regression residuals vs. the analysis of covariance. J Anim Ecol 70:708–711

    Article  Google Scholar 

  • Garland T, Carter PA (1994) Evolutionary physiology. Annu Rev Physiol 56:579–621

    Article  PubMed  Google Scholar 

  • Gomendio M, Roldan ERS (1991) Sperm competition influences sperm size in mammals. Proc R Soc Lond B 243:181–185

    Article  CAS  Google Scholar 

  • Harris WE, Moore AJ, Moore PJ (2007) Variation in sperm size within and between ejaculates in a cockroach. Funct Ecol 21:598–602

    Article  Google Scholar 

  • Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, Oxford, UK

    Google Scholar 

  • Harvey PH, Purvis A (1991) Comparative methods for explaining adaptations. Nature 351:619–624

    Article  PubMed  CAS  Google Scholar 

  • Higdon JJL (1979) A hydrodynamic analysis of flagellar propulsion. J Fluid Mech 90:685–711

    Article  Google Scholar 

  • Holt WV, Shenfield F, Leonard T, Hartmann TD, North RD, Moore HDM (1989) The value of sperm swimming speed measurements in assessing the fertility of human frozen semen. Hum Reprod 4:292–297

    PubMed  CAS  Google Scholar 

  • Humphries S, Evans JP, Simmons LW (2008) Sperm competition: linking form to function. BMC Evol Biol 8:319. doi:10.1186/1471-2148-8-319

    Article  PubMed  Google Scholar 

  • Immler S, Birkhead TR (2005) A non-invasive method for obtaining spermatozoa from birds. Ibis 147:827–830

    Article  Google Scholar 

  • Immler S, Birkhead TR (2007) Sperm competition and sperm midpiece size: no consistent pattern in passerine birds. Proc R Soc Lond B 274:561–568

    Article  Google Scholar 

  • Immler S, Saint-Jalme M, Lesobre L, Sorci G, Roman Y, Birkhead TR (2007) The evolution of sperm morphometry in pheasants. J Evol Biol 20:1008–1014

    Article  PubMed  CAS  Google Scholar 

  • Immler S, Calhim S, Birkhead TR (2008) Increased postcopulatory sexual selection reduces the intramale variation in sperm design. Evolution 62:1538–1543

    Article  PubMed  Google Scholar 

  • Jamieson BGM (1987) The ultrastructure and phylogeny of insect spermatozoa. Cambridge University Press, Cambridge

    Google Scholar 

  • Katz DF, Drobnis EZ, Overstreet JW (1989) Factors regulating mammalian sperm migration through the female reproductive tract and oocyte vestments. Gamete Res 22:443–469

    Article  PubMed  CAS  Google Scholar 

  • Kleven O, Laskemoen T, Fossøy F, Robertson RJ, Lifjeld JT (2008) Intraspecific variation in sperm length is negatively related to sperm competition in passerine birds. Evolution 62:494–499

    Article  PubMed  Google Scholar 

  • LaMunyon CW, Ward S (1998) Larger sperm outcompete smaller sperm in the nematode Caenorhabditis elegans. Proc R Soc Lond B 265:1997–2000

    Article  CAS  Google Scholar 

  • LaMunyon CW, Ward S (1999) Evolution of sperm size in nematodes: sperm competition favours larger sperm. Proc R Soc Lond B 266:263–267

    Article  CAS  Google Scholar 

  • Levitan DR (2000) Sperm velocity and longevity trade off each other and influence fertilization in the sea urchin Lytechinus variegatus. Proc R Soc Lond B 267:531–534

    Article  CAS  Google Scholar 

  • Locatello L, Pilastro A, Deana R, Zarpellon A, Rasatto MB (2007) Variation pattern of sperm quality traits in two gobies with alternative mating tactics. Funct Ecol 21:975–981

    Article  Google Scholar 

  • Lüpold S, Calhim S, Immler S, Birkhead TR (2009a) Sperm morphology and sperm velocity in passerine birds. Proc R Soc Lond B 276:1175–1181

    Article  Google Scholar 

  • Lüpold S, Linz GM, Rivers JW, Westneat DF, Birkhead TR (2009b) Sperm competition selects beyond relative testes size in birds. Evolution 63:391–402

    Article  PubMed  Google Scholar 

  • Malo AF, Garde JJ, Soler AJ, Garcia AJ, Gomendio M, Roldan ERS (2005a) Male fertility in natural populations of red deer is determined by sperm velocity and the proportion of normal spermatozoa. Biol Reprod 72:822–829

    Article  PubMed  CAS  Google Scholar 

  • Malo AF, Roldan ERS, Garde J, Soler AJ, Gomendio M (2005b) Antlers honestly advertise sperm production and quality. Proc R Soc Lond B 272:149–157

    Article  Google Scholar 

  • Malo AF, Gomendio M, Garde J, Lang-Lenton B, Soler AJ, Roldan ERS (2006) Sperm design and sperm function. Biol Lett 2:246–249

    Article  PubMed  Google Scholar 

  • Martins EP, Hansen TF (1997) Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am Nat 149:646–667

    Article  Google Scholar 

  • Miller GT, Pitnick S (2002) Sperm-female coevolution in Drosophila. Science 298:1230–1233

    Article  PubMed  CAS  Google Scholar 

  • Minoretti N, Baur B (2006) Among- and within-population variation in sperm quality in the simultaneously hermaphroditic land snail Arianta arbustorum. Behav Ecol Sociobiol 60:270–280

    Article  Google Scholar 

  • Moore HDM, Akhondi MA (1996) Fertilizing capacity of rat spermatozoa is correlated with decline in strait-line velocity measured by continuous computer-aided sperm analysis: epididymal rat spermatozoa from the proximal cauda have a greater fertilizing capacity in vitro than those from the distal cauda or vas deferens. J Androl 17:50–60

    PubMed  CAS  Google Scholar 

  • Morrow EH, Gage MJG (2001a) Artificial selection and heritability of sperm length in Gryllus bimaculatus. Heredity 87:356–362

    Article  PubMed  CAS  Google Scholar 

  • Morrow EH, Gage MJG (2001b) Consistent significant variation between individual males in spermatozoal morphometry. J Zool 254:147–153

    Article  Google Scholar 

  • Mossman J (2008) The role of mitochondrial genetic variation on sperm function: empirical tests of the Frank and Hurst hypothesis. Ph.D. thesis. University of Sheffield, Sheffield

  • Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884

    Article  PubMed  CAS  Google Scholar 

  • Pagel MD, Harvey PH (1989) Comparative methods for examining adaptation depend on evolutionary models. Folia Primatol 53:203–220

    Article  PubMed  CAS  Google Scholar 

  • Parker GA (1970) Sperm competition and its evolutionary consequences in the insects. Biol Rev 45:526–567

    Article  Google Scholar 

  • Parker GA (1993) Sperm competition games: sperm size and sperm number under adult control. Proc R Soc Lond B 253:245–254

    Article  CAS  Google Scholar 

  • Parker GA (1998) Sperm competition and the evolution of ejaculates: towards a theory base. In: Birkhead TR, Møller AP (eds) Sperm competition and sexual selection. Academic Press, London, pp 3–54

    Chapter  Google Scholar 

  • Parker GA, Begon ME (1993) Sperm competition games: sperm size and sperm number under gametic control. Proc R Soc Lond B 253:255–262

    Article  CAS  Google Scholar 

  • Pellatt EJ, Birkhead TR (1994) Ejaculate size in zebra finches Taeniopygia guttata and a method for obtaining ejaculates from passerine birds. Ibis 136:97–106

    Article  Google Scholar 

  • Pitcher TE, Rodd FH, Rowe L (2007) Sexual colouration and sperm traits in guppies. J Fish Biol 70:165–177

    Article  Google Scholar 

  • Pitnick S, Hosken DJ, Birkhead TR (2009) Sperm diversity. In: Birkhead TR, Hosken DJ, Pitnick S (eds) Sperm biology: an evolutionary perspective. Elsevier, London, pp 69–149

    Google Scholar 

  • Pizzari T, Cornwallis CK, Froman D (2007) Social competitiveness associated with rapid fluctuations in sperm quality in male fowl. Proc R Soc Lond B 274:853–860

    Article  Google Scholar 

  • Samour JH, Smith CA, Moore HD, Markham JA (1986) Semen collection and spermatozoa characteristics in budgerigars (Melopsittacus undulatus). Vet Rec 118:397–399

    PubMed  CAS  Google Scholar 

  • Sivinski J (1980) Sexual selection and insect sperm. Fla Entomol 63:99–111

    Article  Google Scholar 

  • Snook RR (2005) Sperm in competition: not playing by the numbers. Trends Ecol Evol 20:46–53

    Article  PubMed  Google Scholar 

  • Stoltz JA, Neff BD (2006) Sperm competition in a fish with external fertilization: the contribution of sperm number, speed and length. J Evol Biol 19:1873–1881

    Article  PubMed  CAS  Google Scholar 

  • Thornhill R (1983) Cryptic female choice and its implications in the scorpionfly Harpobittacus nigriceps. Am Nat 122:765–788

    Article  Google Scholar 

  • Urbach D, Bittner D, Lenz TL, Bernet D, Wahli T, Wedekind C (2007) Sperm velocity in an alpine whitefish: effects of age, size, condition, fluctuating asymmetry and gonad abnormalities. J Fish Biol 71:672–683

    Article  Google Scholar 

  • Ward PI (1998) Intraspecific variation in sperm size characters. Heredity 80:655–659

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Homan, P. Llambias, N. López, D. Ortiz, L. Reinhardt, J. Ross, C. and F. Ruiz, K. Soria and A. Trutsch for their help in the field. Additional sperm samples were provided by the Alaska Bird Observatory, Bird Collection of the Smithsonian National Museum of Natural History, Cornell Lab of Ornithology, Museo de La Plata Buenos Aires, Museu de Zoologia da Universidade de São Paulo, Museum of Wildlife and Fish Biology UC Davis, Proyecto Recuperación de la Mariquita, M. Avery, A. Azpiroz, M. Conway, K. Ellison, D. Elwonger, A. Fonseca, S. Immler, W. Janousek, R. Keith, D. Maddox, R. Meese, B. Ortiz, B. Peer, T. Pepps, N. Perlut, R. Rehmeier, J. Rivers, V. Rohwer, B. Sandercock, W. Ward, C. Willis and G. Young. We also thank the anonymous referees for their constructive comments on our manuscript. S. L. was supported by the Janggen-Poehn Foundation, the Swiss National Science Foundation, a Sheffield University Overseas Research Student Award, a Lauff Research Award and an NSF LTER Graduate Research Award; T. R. B. was funded by the Leverhulme Trust. All samples were collected under licence of the respective institutions or collaborators and, within the US, under an additional collective Federal Fish and Wildlife Permit (MB 131466).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Lüpold.

Additional information

Communicated by R. Gibson

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 137 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lüpold, S., Linz, G.M. & Birkhead, T.R. Sperm design and variation in the New World blackbirds (Icteridae). Behav Ecol Sociobiol 63, 899–909 (2009). https://doi.org/10.1007/s00265-009-0733-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-009-0733-6

Keywords

Navigation