Skip to main content
Log in

Insights on common dolphin (Delphinus delphis) social organization from genetic analysis of a mass-stranded pod

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Compared to terrestrial mammals, little is known of cetacean social systems as they are generally less accessible to behavioral investigations due to their aquatic environment. The present study investigates group structure of the pelagic common dolphin, Delphinus delphis, using genetic markers. Tissue samples from 52 individuals representing a recent live mass-stranding event were compared to 42 single strandings taken from presumably different groups. The mass-stranding event occurred in 2002 on the French coast of the English Channel, whereas the single strandings were collected between 1993 and 2003 along the western coast of France (Bay of Biscay and English Channel). Analysis of mitochondrial DNA control region sequences indicated that genetic variability within the mass-stranded pod was similar to variability observed in single strandings. The mass-stranded group was composed of 41 different mitochondrial haplotypes or matrilines while the single strandings revealed 29 different haplotypes. Analysis of 11 microsatellite loci revealed that average relatedness of the mass-stranded pod was not different from average relatedness among all single strandings suggesting that individuals within the group had no closer kin relationships than animals taken from presumably different groups. These results do not support a matriarchal system and suggest that common dolphins constituting a pod are not necessarily genetically related.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams LD, Rosel PE (2006) Population differentiation of the Atlantic spotted dolphin (Stenella frontalis) in the western North Atlantic, including the Gulf of Mexico. Mar Biol 148:671–681, doi:10.1007/s00227-005-0094-2

    Article  Google Scholar 

  • Altmann J, Alberts SC, Haines SA, Dubach J, Muruthi P, Coote T, Geffen E, Cheesman DJ, Mututua RS, Saiyalel SN, Wayne RK, Lacy RC, Bruford MW (1996) Behavior predicts genetic structure in a wild primate group. Proc Natl Acad Sci USA 93:5797–5801

    Article  PubMed  CAS  Google Scholar 

  • Amos B (1999) Technical comment: cultural and genetic evolution in whales. Science 284:2055a

    Article  Google Scholar 

  • Amos B, Schlötterer C, Tautz D (1993) Social structure of pilot whales revealed by analytical DNA profiling. Science 260:670–672

    Article  PubMed  CAS  Google Scholar 

  • Baird RW (2000) The killer whale: foraging specializations and group hunting. In: Mann J, Connor RC, Tyack PL, Whitehead H (eds) Cetaceans societies: field studies of dolphins and whales. The University of Chicago Press, Chicago, pp 127–153

    Google Scholar 

  • Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    PubMed  CAS  Google Scholar 

  • Bearzi G, Reeves RR, Notarbartolo-Di-Sciara G, Politi E, Canadas A, Frantzis A, Mussi B (2003) Ecology, status and conservation of short-beaked common dolphins Delphinus delphis in the Mediterranean Sea. Mamm Rev 33:224–252, doi:10.1046/j.1365-2907.2003.00032.x

    Article  Google Scholar 

  • Bernard H, Hohn A (1989) Differences in feeding habits between pregnant and lactating spotted dolphins (Stenella attenuata). J Mammal 70:211–215

    Article  Google Scholar 

  • Bigg M, Olesiuk P, Ellis G, Ford J, Balcomb K (1990) Social organization and genealogy of resident killer whales (Orcinus orca) in the coastal waters of British Columbia and Washington State. Rep Int Whal Comm (special issue 12):383–405

  • Blouin MS, Parsons M, Lacaille V, Lotz S (1996) Use of microsatellite loci to classify individuals by relatedness. Mol Ecol 5:393–401, doi:10.1046/j.1365-294X.1996.00094.x

    Article  PubMed  CAS  Google Scholar 

  • Bruno S, Politi E, Bearzi G (2004) Social organization of a common dolphin community in the eastern Ionian sea: evidence of a fluid fission–fusion society. In: Evans P, O’Boyle E (eds) European Research on Cetaceans: Proceedings of the Fifteenth Annual Conference of the European Cetacean Society 15:49–51

  • Caldwell MC, Caldwell DK (1966) Epimeletic (care-giving) behavior in Cetacea. In: Norris KS (ed) Whales, dolphins, and porpoises. University of California Press, Berkeley, pp 755–789

    Google Scholar 

  • Clutton-Brock T, Iason G, Guinness F (1987) Sexual segregation and density related changes in habitat use in male and female red deer (Cervus elaphus). J Zool 211:275–289

    Article  Google Scholar 

  • Connor RC (2000) Group living in whales and dolphins. In: Mann J, Connor RC, Tyack PL, Whitehead H (eds) Cetaceans societies: field studies of dolphins and whales. The University of Chicago Press, Chicago, pp 199–218

    Google Scholar 

  • Connor RC, Smolker R, Richards A (1992) Two levels of alliance formation among bottlenose dolphins (Tursiops sp.). Proc Natl Acad Sci USA 89:987–990

    Article  PubMed  CAS  Google Scholar 

  • Connor RC, Wells R, Mann J, Read A (2000) The bottlenose dolphin: social relationships in a fission–fusion society. In: Mann J, Connor RC, Tyack PL, Whitehead H (eds) Cetaceans societies: field studies of dolphins and whales. The University of Chicago Press, Chicago, pp 91–126

    Google Scholar 

  • Dabin W, Cossais F, Ridoux V (2002) L’échouage en masse de Pleubian: une opportunité pour l’étude de la biologie et de la composition sociale du dauphin commun. In: Actes du 4ème Séminaire du Réseau National d’Echouages, Centre de Recherche sur les Mammifères Marins, 11

  • Durbin J (1973) Distribution theory for tests based on the sample distribution function. In: SIAM Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics Philadelphia, 32

  • Eggert LS, Lux CA, O’Corry-Crowe GM, Dizon AE (1998) Dried dolphin blood on fishery observer records provides DNA for genetic analyses. Mar Mamm Sci 14:136–143, doi:10.1111/j.1748-7692.1998.tb00696.x

    Article  Google Scholar 

  • Evans W (1994) Common dolphin, white-bellied porpoise Delphinus delphis Linnaeus, 1758. In: Ridgway S, Harrison R (eds) Handbook of marine mammals. vol. 5. Academy, London, pp 191–214

    Google Scholar 

  • Faulkes C, Arruda M, Monteiro Da Cruz M (2003) Matrilineal genetic structure within and among populations of the cooperatively breeding common marmoset, Callithrix jacchus. Mol Ecol 12:1101–1108, doi:10.1046/j.1365-294X.2003.01809.x

    Article  PubMed  CAS  Google Scholar 

  • Forcada J, Aguilar A, Evans P, Perrin W (1990) Distribution of common and striped dolphins in the temperate waters of the eastern north Atlantic. In: Evans P, Aguilar A, Smeenk C (eds) European Research on Cetaceans: Proceedings of the Fourth Annual Conference of the European Cetacean Society, vol. 4, pp 64–65

  • Ginnett T, Demment M (1999) Sex segregation by Masai giraffes at two spatial scales. Afr J Ecol 37:93–106, doi:10.1046/j.1365-2028.1999.00163.x

    Article  Google Scholar 

  • Goodnight K, Queller D (1999) Computer software for performing likelihood tests of pedigree relationship using genetic markers. Mol Ecol 8:1231–1234, doi:10.1046/j.1365-294x.1999.00664.x

    Article  Google Scholar 

  • Goudet J (1995) FSTAT (vers. 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Guo S, Thompson E (1992) Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics 48:361–372

    Article  PubMed  CAS  Google Scholar 

  • Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hoelzel A, Dover G (1991) Mitochondrial d-loop DNA variation within and between populations of the minke whale (Balaenoptera acutorostrata). Rep Int Whal Comm (special issue 13):171–181

  • Hoelzel AR, Dahlheim M, Stern SJ (1998) Low genetic variation among killer whales (Orcinus orca) in the eastern North Pacific and genetic differentiation between foraging specialists. J Hered 89:121–128, doi:10.1093/jhered/89.2.121

    Article  PubMed  CAS  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Statist 6:65–70

    Google Scholar 

  • Hurlbert S (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577–586

    Article  Google Scholar 

  • Hutchinson C, Newbold J, Potter S, Edgell M (1974) Maternal inheritance of mitochondrial DNA. Nature 251:536–538

    Article  Google Scholar 

  • Karczmarski L, Würsig B, Gailey G, Larson KW, Vanderlip C (2005) Spinner dolphins in a remote Hawaiian atoll: social grouping and population structure. Behav Ecol 16:675–685, doi:10.1093/beheco/ari028

    Article  Google Scholar 

  • Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196–6200

    Article  PubMed  CAS  Google Scholar 

  • Krützen M, Valsecchi E, Connor RC, Sherwin WB (2001) Characterization of microsatellite loci in Tursiops aduncus. Mol Ecol Notes 1:170–172, doi:10.1046/j.1471-8278.2001.00065.x

    Article  Google Scholar 

  • Krützen M, Mann J, Heithaus MR, Connor RC, Bejder L, Sherwin WB (2005) Cultural transmission of tool use in bottlenose dolphins. Proc Natl Acad Sci USA 102:8939–8943

    Article  PubMed  CAS  Google Scholar 

  • Lahaye V (2006) Les éléments traces chez les petits cétacés des eaux européennes: utilisation du cadminum (Cd) et du mercure (Hg) en tant que traceurs. Ph.D. thesis. Université de la Rochelle, France

  • Lusseau D, Schneider K, Boisseau OJ, Haase P, Slooten E, Dawson SM (2003) The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations: can geographic isolation explain this unique trait? Behav Ecol Sociobiol 54:396–405, doi:10.1007/s00265-003-0651-y

    Article  Google Scholar 

  • Main M, Coblentz B (1990) Sex segregation among ungulates: a critique. Wildl Soc Bull 18(2):204–210

    Google Scholar 

  • Mesnick S (2001) Genetic relatedness in sperm whales: evidence and cultural implications. Behav Brain Sci 24(2):346–347, doi:10.1017/S0140525X01463965

    Article  Google Scholar 

  • Meynier L, Pusineri C, Spitz J, Santos MB, Pierce GJ, Ridoux V (2008) Intraspecific dietary variation in the short-beaked common dolphin Delphinus delphis in the Bay of Biscay: importance of fat fish. Mar Ecol Prog Ser 354:277–287, doi:10.3354/meps07246

    Article  Google Scholar 

  • Mirimin L (2007) Molecular genetics of three dolphin species occurring in the eastern North-Atlantic. Ph.D. thesis. National University of Ireland, Cork, Ireland

  • Miyazaki N, Nishiwaki M (1978) School structure of the striped dolphin off the Pacific coast of Japan. Sci Rep Whales Res Inst, Tokyo 30:65–115

    Google Scholar 

  • Möller LM, Beheregaray LB, Allen SJ, Harcourt RG (2006) Association patterns and kinship in female Indo-Pacific bottlenose dolphins (Tursiops aduncus) of southeastern Australia. Behav Ecol Sociobiol 61:109–117, doi:10.1007/s00265-006-0241-x

    Article  Google Scholar 

  • Murphy S, Collet A, Rogan E (2005) Mating strategy in the male common dolphin (Delphinus delphis): what gonadal analysis tells us. J Mamm 86:1247–1258, doi:10.1644/1545-1542(2005)86[1247:MSITMC]2.0.CO;2

    Article  Google Scholar 

  • Murray T, Murphy S (2003) Common dolphin Delphinus delphis L. strandings on the Mullet peninsula. Ir Nat J 27:240–241

    Google Scholar 

  • Natoli A, Peddemors VM, Hoelzel AR (2004) Population structure and speciation in the genus Tursiops based on microsatellite and mitochondrial DNA analyses. J Evol Biol 17:363–375, doi:10.1046/j.1420-9101.2003.00672.x

    Article  PubMed  CAS  Google Scholar 

  • Natoli A, Cañadas A, Peddemors VM, Aguilar A, Vaquero C, Fernández-Piqueras P, Hoelzel AR (2006) Phylogeography and alpha taxonomy of the common dolphin (Delphinus sp.). J Evol Biol 19:943–954, doi:10.1111/j.1420-9101.2005.01033.x

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Neumann D, Russell K, Orams M, Baker SPD (2002) Identifying sexually mature, male short-beaked common dolphins (Delphinus delphis) at sea, based on the presence of a postanal hump. Aquat Mamm 28:181–187

    Google Scholar 

  • Perrin W (2002) Common dolphins. In: Perrin WF, Würzig B, Thewissen JGM (eds) Encyclopedia of marine mammals. Academic, San Diego, pp 245–248

    Google Scholar 

  • Perrin W, Reilly S (1984) Reproductive parameters of dolphins and small whales of the family delphinidae. Rep Int Whal Comm (special issue 6):97–133

  • Pierce GJ, Santos MB, Murphy S, Learmonth JA, Zuur AF, Rogan E, Bustamante P, Caurant F, Lahaye V, Ridoux V, Zegers BN, Mets A, Addink M, Smeenk C, Jauniaux T, Law RJ, Dabin W, Lόpez A, Alonso Farré JM, González AF, Guerra A, García-Hartmann M, Reid RJ, Moffat CF, Lockyer C, Boon JP (2008) Bioaccumulation of persistent organic pollutants in female common dolphins (Delphinus delphis) and harbour porpoises (Phocoena phocoena) from western European seas: geographical trends, causal factors and effects on reproduction and mortality. Environ Pollut 153(2):401–415, doi:10.1016/j.envpol.2007.08.019

    Article  CAS  Google Scholar 

  • Queller D, Goodnight K (1989) Estimating relatedness using genetic markers. Evolution 43:258–275

    Article  Google Scholar 

  • R Development Core Team (2005) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, URL http://www.R-project.org, ISBN 3-900051-07-0

  • Raymond M, Rousset F (1995) Genepop (version 1.2), population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Rogan E, Mackey M (2007) Megafauna bycatch in drift nets for albacore tuna (Thunnus alalunga) in the NE Atlantic. Fish Res 86:6–14

    Article  Google Scholar 

  • Rooney AP, Merritt DB, Derr JN (1999) Microsatellite diversity in captive bottlenose dolphins (Tursiops truncatus). J Hered 90:228–231, doi:10.1093/jhered/90.1.228

    Article  PubMed  CAS  Google Scholar 

  • Rosel PE, Tiedemann R, Walton M (1999a) Genetic evidence for limited trans-Atlantic movements of the harbor porpoise Phocoena phocoena. Mar Biol 133:583–591, doi:10.1007/s002270050498

    Article  CAS  Google Scholar 

  • Rosel PE, France SC, Wang JY, Kocher TD (1999b) Genetic structure of harbour porpoise Phocoena phocoena populations in the northwest Atlantic based on mitochondrial and nuclear markers. Mol Ecol 8:S41–S54, doi:10.1046/j.1365-294X.1999.00758.x

    Article  PubMed  CAS  Google Scholar 

  • Rosel PE, Forgetta V, Dewar K (2005) Isolation and characterization of twelve polymorphic microsatellite markers in bottlenose dolphins (Tursiops truncatus). Mol Ecol Notes 5:830–833, doi:10.1111/j.1471-8286.2005.01078.x

    Article  CAS  Google Scholar 

  • Rozas J, Rozas R (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174–175, doi:10.1093/bioinformatics/15.2.174

    Article  PubMed  CAS  Google Scholar 

  • Schwacke L, Schwacke J, Rosel P (2005) RERAT: relatedness estimation and rarefaction analysis tool, url http://people.musc.edu/~schwaclh/

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. Freeman, W.H. and Company, San Francisco

    Google Scholar 

  • Spitz J, Meynier L, Pusineri C, Ridoux V (2005) Consideration of sampling sources for cetacean diet analysis: the common dolphin, Delphinus delphis, in the northeast Atlantic. Abstract. In: Nineteenth Conference of the European Cetacean Society

  • Stockin KA (2007) The biology and ecology of New Zealand common dolphins (Delphinus delphis). Ph.D. thesis. Massey University, New Zealand

  • Valsecchi E, Amos W (1996) Microsatellite markers for the study of cetacean populations. Mol Ecol 5:151–156

    Article  PubMed  CAS  Google Scholar 

  • Valsecchi E, Hale P, Corkeron P, Amos W (2002) Social structure in migrating humpback whales (Megaptera novaeangliae). Mol Ecol 11:507–518, doi:10.1046/j.0962-1083.2001.01459.x

    Article  PubMed  CAS  Google Scholar 

  • van Oosterhoot C, Hutchinson W, Wills D, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538, doi:10.1111/j.1471-8286.2004.00684.x

    Article  CAS  Google Scholar 

  • Wang J (2004) Estimating pairwise relatedness from dominant genetic markers. Mol Ecol 13:3169–3178, doi:10.1111/j.1365-294X.2004.02298.x

    Article  PubMed  CAS  Google Scholar 

  • Weber J, Wong C (1993) Mutation of human short tandem repeats. Hum Mol Gen 2:1123–1128

    Article  PubMed  CAS  Google Scholar 

  • Weir B, Cockerham C (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Westgate A (2005) Population structure and life history of short-beaked common dolphins (Delphinus delphis) in the north Atlantic. Ph.D. thesis. Nicholas School of the Environment and Earth Sciences, Duke University, USA

  • Wrangham R (1983) Social relationships in comparative perspective. In: Hinde R (ed) Primate social relationships. Blackwell, Oxford, pp 255–262

    Google Scholar 

  • Wrangham R (1986) Ecology and social relationships in two species of chimpanzee. In: Rubenstein D, Wrangham R (eds) Ecological aspects of social evolution. Princeton University Press, Princeton, pp 352–378

    Google Scholar 

Download references

Acknowledgments

CITES exportation and importation permits were obtained to import DNA samples from France to the United States (permit numbers: FR-04-017-00104-E and 04US694250/9). Funding was provided by the European program NECESSITY, the Centre de Recherche sur les Mammifères Marins, the Lerner-Gray Memorial Fund of the American Museum of Natural History, the Slocum Lunz Foundation, and the College of Charleston. Eric Pante, Vanessa Becquet-Buren, and Benoît Simon-Bouhet provided help with the laboratory work. Eric Pante helped with computer simulations. Melissa Hughes, Wayne McFee, and Eric Pante improved an earlier version of the manuscript. We thank the members of the Centre de Recherche sur les Mammifères Marins who collected the tissue samples. All experiments conducted in this study complied with the current laws of France and the United States.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amélia Viricel.

Additional information

Communicated by V. Janik

Appendix

Appendix

Microsatellite PCR cycling profiles (see Table 2 for annealing temperature (T a))

  • Ttr04, Ttr11, and Ttr19: 94°C for 30 s, and then 30 cycles of 20 s at 94°C, 20 s at T a and 30 s at 72°C, and a 10-min final extension at 72°C

  • Ttr48 and Ttr34: 94°C for 30 s, and then 28 cycles of 20 s at 94°C, 20 s at T a, and 20 s at 72°C, and a 10-min final extension at 72°C

  • EV14, EV94, and KWM12: 94°C for 30 s, and then 30 cycles of 30 s at 94°C, 30 s at T a, and 30 s at 72°C, and a 10-min final extension at 72°C

  • Ttr63, EV37, and TexVet5: 94°C for 30 s, and then 30 cycles of 30 s at 94°C, 40 s at T a, and 40 s at 72°C, and a 15-min final extension at 72°C

  • Ttr58: 94°C for 30 s, then 10 cycles of 30 s at 94°C, 70°C with a 1°C decrease per step for 40 s, and 40 s at 72°C, and then 20 cycles of 30 s at 94°C, 40 s at T a, and 40 s at 72°C, and a 15-min final extension at 72°C

  • MK5, MK6, MK8, and MK9: 94°C for 3 min, then 10 cycles of 30 s at 92°C, 60°C with a 1°C decrease per step for 30 s, and 1 min at 72°C, and then 24 cycles of 30 s at 92°C, 30 s at T a, and 1 min at 72°C, and a 10-min final extension at 72°C

  • TexVet7: 96°C for 2 min, and then 35 cycles of 30 s at 94°C, 30 s at T a, and 1 min at 72°C, and a 10-min final extension at 74°C

  • PPHO110: 95°C for 30 s, and then 27 cycles of 30 s at 94°C, 30 s at T a, and 30 s at 72°C, and a 10-min final extension at 72°C

Problems associated with six loci not genotyped in this study

MK9, TexVet5, and PPHO110 did not produce any products, whereas MK6 amplified two non-specific additional fragments in some of the samples. Natoli et al. (2006) amplified TexVet5 successfully in samples from the genus Delphinus and it is noteworthy that amplification of each locus was attempted only once using published protocols, without optimization. Polymorphism was not detected at locus Ttr48 on the polyacrylamide gel, and this locus was therefore not included in this study. However, this locus might show variability if tested on more individuals or might have alleles that differ in size by only a few repeat units which could not be visualized with the resolution of a 6% polyacrylamide gel. Ttr34 was polymorphic but did not amplify once it was labeled with the fluorescent dye D2 and was dropped.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viricel, A., Strand, A.E., Rosel, P.E. et al. Insights on common dolphin (Delphinus delphis) social organization from genetic analysis of a mass-stranded pod. Behav Ecol Sociobiol 63, 173–185 (2008). https://doi.org/10.1007/s00265-008-0648-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-008-0648-7

Keywords

Navigation