Skip to main content

Advertisement

Log in

Repair of segmental long-bone defects by stem cell concentrate augmented scaffolds: a clinical and positron emission tomography - computed tomography analysis

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Treating segmental long-bone defects remains a major challenge. For defects >3 cm, segmental transport represents the gold standard, even though the method is time consuming and afflicted with several complications. The aim of this study was to evaluate healing of such defects after grafting an osteogenic scaffold previously seeded with stem cell concentrate.

Methods

We evaluated five patients with segmental long-bone defects (3–14 cm) treated with bone marrow aspirate concentrates (BMAC) seeded onto a bovine xenogenous scaffold. The healing process was monitored by X-rays and positron emission tomography–computed tomography (PET-CT) three months after surgery.

Results

Centrifugation led to a concentration of leukocytes by factor 8.1 ± 7.5. Full weight bearing was achieved 11.3 ± 5.0 weeks after surgery. PET analysis showed an increased influx of fluoride by factor 8.3 ± 6.4 compared with the contralateral side (p < 0.01). Bone density in the cortical area was 75 ± 16 % of the contralateral side (p < 0.03). The patient with the largest defect sustained an implant failure in the distal femur and finally accomplished therapy by segmental transport. He also had the lowest uptake of fluoride of the patient collective (2.2-fold increase).

Conclusion

Stem cell concentrates can be an alternative to segmental bone transport. Further studies are needed to compare this method with autologous bone grafting and segmental transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jager M, Herten M, Fochtmann U et al (2011) Bridging the gap: bone marrow aspiration concentrate reduces autologous bone grafting in osseous defects. J Orthop Res 29(2):173–180

    Article  PubMed  Google Scholar 

  2. Al-Zube L, Breitbart EA, O’Connor JP et al (2009) Recombinant human platelet-derived growth factor BB (rhPDGF-BB) and beta-tricalcium phosphate/collagen matrix enhance fracture healing in a diabetic rat model. J Orthop Res 27(8):1074–1081

    Article  PubMed  CAS  Google Scholar 

  3. Bessa PC, Casal M, Reis RL (2008) Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). J Tissue Eng Regen Med 2(2–3):81–96

    Article  PubMed  CAS  Google Scholar 

  4. Bessa PC, Casal M, Reis RL (2008) Bone morphogenetic proteins in tissue engineering: the road from the laboratory to the clinic, part I (basic concepts). J Tissue Eng Regen Med 2(1):1–13

    Article  PubMed  CAS  Google Scholar 

  5. Ghodadra N, Singh K (2008) Recombinant human bone morphogenetic protein-2 in the treatment of bone fractures. Biogeosciences 2(3):345–354

    CAS  Google Scholar 

  6. Giannoudis PV, Tzioupis C (2005) Clinical applications of BMP-7: the UK perspective. Injury 36(Suppl 3):S47–S50

    Article  PubMed  Google Scholar 

  7. Dimitriou R, Dahabreh Z, Katsoulis E et al (2005) Application of recombinant BMP-7 on persistent upper and lower limb non-unions. Injury 36(Suppl 4):S51–S59

    Article  PubMed  Google Scholar 

  8. Graham S, Leonidou A, Lester M et al (2009) Investigating the role of PDGF as a potential drug therapy in bone formation and fracture healing. Expert Opin Investig Drugs 18(11):1633–1654

    Article  PubMed  CAS  Google Scholar 

  9. Hollinger JO, Hart CE, Hirsch SN et al (2008) Recombinant human platelet-derived growth factor: biology and clinical applications. J Bone Joint Surg Am 90(Suppl 1):48–54

    Article  PubMed  Google Scholar 

  10. Hollinger JO, Onikepe AO, MacKrell J et al (2008) Accelerated fracture healing in the geriatric, osteoporotic rat with recombinant human platelet-derived growth factor-BB and an injectable beta-tricalcium phosphate/collagen matrix. J Orthop Res 26(1):83–90

    Article  PubMed  CAS  Google Scholar 

  11. Kasten P, Vogel J, Geiger F et al (2008) The effect of platelet-rich plasma on healing in critical-size long-bone defects. Biomaterials 29(29):3983–3992

    Article  PubMed  CAS  Google Scholar 

  12. Lissenberg-Thunnissen SN, de Gorter DJ, Sier CF, Schipper IB (2011) Use and efficacy of bone morphogenetic proteins in fracture healing. Int Orthop 35(9):1271–1280

    Article  PubMed  Google Scholar 

  13. Bishop GB, Einhorn TA (2007) Current and future clinical applications of bone morphogenetic proteins in orthopaedic trauma surgery. Int Orthop 31(6):721–727

    Article  PubMed  Google Scholar 

  14. Hendrich C, Franz E, Waertel G et al (2009) Safety of autologous bone marrow aspiration concentrate transplantation: initial experiences in 101 patients. Orthop Rev (Pavia) 1(2):e32

    Article  Google Scholar 

  15. Jager M, Jelinek EM, Wess KM et al (2009) Bone marrow concentrate: a novel strategy for bone defect treatment. Curr Stem Cell Res Ther 4(1):34–43

    Article  PubMed  Google Scholar 

  16. Gessmann J, Köller M, Godry H et al (2012) Regenerate augmentation with bone marrow concentrate after traumatic bone loss. Orthop Rev (Pavia) 4(1):e14

    Article  Google Scholar 

  17. Schliephake H, Berding G, Knapp WH, Sewilam S (1999) Monitoring of graft perfusion and osteoblast activity in revascularised fibula segments using [18F]-positron emission tomography. Int J Oral Maxillofac Surg 28(5):349–355

    Article  PubMed  CAS  Google Scholar 

  18. Guda T, Walker JA, Singleton BM et al (2013) Guided bone regeneration in long-bone defects with a structural hydroxyapatite graft and collagen membrane. Tissue Eng Part A 19(17–18):1879–1888

    Article  PubMed  CAS  Google Scholar 

  19. Reichert JC, Cipitria A, Epari DR et al (2012) A tissue engineering solution for segmental defect regeneration in load-bearing long bones. Sci Transl Med 4(141):141ra93

    Article  PubMed  Google Scholar 

  20. Goshima K, Nakase J, Xu Q et al (2012) Repair of segmental bone defects in rabbit tibia promoted by a complex of beta-tricalcium phosphate and hepatocyte growth factor. J Orthop Sci 17(5):639–648

    Article  PubMed  CAS  Google Scholar 

  21. Sauerbier S, Rickert D, Gutwald R et al (2011) Bone marrow concentrate and bovine bone mineral for sinus floor augmentation: a controlled, randomized, single-blinded clinical and histological trial-per-protocol analysis. Tissue Eng Part A 17(17–18):2187–2197

    Article  PubMed  CAS  Google Scholar 

  22. Rickert D, Sauerbier S, Nagursky H et al (2011) Maxillary sinus floor elevation with bovine bone mineral combined with either autogenous bone or autogenous stem cells: a prospective randomized clinical trial. Clin Oral Implants Res 22(3):251–258

    Article  PubMed  CAS  Google Scholar 

  23. Zhong W, Sumita Y, Ohba S et al (2012) In vivo comparison of the bone regeneration capability of human bone marrow concentrates vs. platelet-rich plasma. PLoS One 7(7):e40833

    Article  PubMed  CAS  Google Scholar 

  24. Cao L, Liu G, Gan Y et al (2012) The use of autologous enriched bone marrow MSCs to enhance osteoporotic bone defect repair in long-term estrogen deficient goats. Biomaterials 33(20):5076–5084

    Article  PubMed  CAS  Google Scholar 

  25. Buttaro MA, Constantini J, Comba F, Piccaluga F (2012) The use of femoral struts and impacted cancellous bone allograft in patients with severe femoral bone loss who undergo revision total hip replacement: a three- to nine-year follow-up. J Bone Joint Surg Br 94(2):167–172

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mrs. Luisa Schäck and Prof. Dr. Andrea Hoffmann from the Laboratory for Biology of the Musculoskeletal System, Trauma Department, Hannover Medical School, for their help with FACS analysis.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Petri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petri, M., Namazian, A., Wilke, F. et al. Repair of segmental long-bone defects by stem cell concentrate augmented scaffolds: a clinical and positron emission tomography - computed tomography analysis. International Orthopaedics (SICOT) 37, 2231–2237 (2013). https://doi.org/10.1007/s00264-013-2087-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-013-2087-y

Keywords

Navigation