Skip to main content
Log in

Biomechanical comparison of different fixation techniques for reconstruction of tibial avulsion fractures of the anterior cruciate ligament

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The most common fixation techniques for tibial avulsion fractures of the anterior cruciate ligament (ACL) described in the literature are screw and suture fixation. The fixation of these fractures with the TightRope® device might be an alternative. Up to now it has been commonly used in other injuries, such as acromioclavicular joint or syndesmosis ruptures. The purpose of this study was to evaluate the biomechanical properties of different fixation techniques for the reconstruction of tibial avulsion fractures.

Methods

Type III tibial avulsion fractures were simulated in 40 porcine knees. Each specimen was randomly assigned to one of four groups: (1) anterograde screw fixation, (2) suture fixation, (3) TightRope® fixation or (4) control group. The initial displacement, strength to failure and the failure mode were documented.

Results

The maximum load to failure was 1,345 ± 155.5 N for the control group, 402.5 ± 117.6 N for the TightRope® group, 367 ± 115.8 N for the suture group and 311.7 ± 120.3 N for the screw group. The maximum load to failure of the control group was significantly larger compared to all other groups. The initial dislocation was 0.28 ± 0.09 mm for the control group, 0.55 ± 0.26 mm for the TightRope® group, 0.84 ± 0.15 mm for the screw group and 1.14 ± 0.9 mm for the suture group. The initial dislocation was significantly larger for the suture group compared to the TightRope® and control groups.

Conclusions

The TightRope® fixation shows significantly lower initial displacement compared to the suture group. The TightRope® fixation might be an alternative for the repair of ACL tibial avulsion fractures that can be used arthroscopically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahn JH, Yoo JC (2005) Clinical outcome of arthroscopic reduction and suture for displaced acute and chronic tibial spine fractures. Knee Surg Sports Traumatol Arthrosc 13(2):116–121

    Article  PubMed  Google Scholar 

  2. Griffith JF, Antonio GE, Tong CW, Ming CK (2004) Cruciate ligament avulsion fractures. Arthroscopy 20(8):803–812

    PubMed  Google Scholar 

  3. Hunter RE, Willis JA (2004) Arthroscopic fixation of avulsion fractures of the tibial eminence: technique and outcome. Arthroscopy 20(2):113–121

    Article  PubMed  Google Scholar 

  4. Huang TW, Hsu KY, Cheng CY, Chen LH, Wang CJ, Chan YS, Chen WJ (2008) Arthroscopic suture fixation of tibial eminence avulsion fractures. Arthroscopy 24(11):1232–1238

    Article  PubMed  Google Scholar 

  5. Kogan MG, Marks P, Amendola A (1997) Technique for arthroscopic suture fixation of displaced tibial intercondylar eminence fractures. Arthroscopy 13(3):301–306

    Article  PubMed  CAS  Google Scholar 

  6. Ahn JH, Lee YS, Lee DH, Ha HC (2008) Arthroscopic physeal sparing all inside repair of the tibial avulsion fracture in the anterior cruciate ligament: technical note. Arch Orthop Trauma Surg 128(11):1309–1312

    Article  PubMed  Google Scholar 

  7. Delcogliano A, Chiossi S, Caporaso A, Menghi A, Rinonapoli G (2003) Tibial intercondylar eminence fractures in adults: arthroscopic treatment. Knee Surg Sports Traumatol Arthrosc 11(4):255–259

    Article  PubMed  CAS  Google Scholar 

  8. Kim YM, Kim SJ, Yang JY, Kim KC (2007) Pullout reattachment of tibial avulsion fractures of the anterior cruciate ligament: a firm, effective suture-tying method using a tensioner. Knee Surg Sports Traumatol Arthrosc 15(7):847–850

    Article  PubMed  Google Scholar 

  9. Lafrance RM, Giordano B, Goldblatt J, Voloshin I, Maloney M (2010) Pediatric tibial eminence fractures: evaluation and management. J Am Acad Orthop Surg 18(7):395–405

    PubMed  Google Scholar 

  10. Bong MR, Romero A, Kubiak E, Iesaka K, Heywood CS, Kummer F, Rosen J, Jazrawi L (2005) Suture versus screw fixation of displaced tibial eminence fractures: a biomechanical comparison. Arthroscopy 21(10):1172–1176

    Article  PubMed  Google Scholar 

  11. Eggers AK, Becker C, Weimann A, Herbort M, Zantop T, Raschke MJ, Petersen W (2007) Biomechanical evaluation of different fixation methods for tibial eminence fractures. Am J Sports Med 35(3):404–410

    Article  PubMed  Google Scholar 

  12. Hapa O, Barber FA, Süner G, Özden R, Davul S, Bozdağ E, Sünbüloğlu E (2012) Biomechanical comparison of tibial eminence fracture fixation with high-strength suture, EndoButton, and suture anchor. Arthroscopy 28(5):681–687

    Article  PubMed  Google Scholar 

  13. In Y, Kwak DS, Moon CW, Han SH, Choi NY (2012) Biomechanical comparison of three techniques for fixation of tibial avulsion fractures of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 20(8):1470–1478

    Article  PubMed  Google Scholar 

  14. Mahar AT, Duncan D, Oka R, Lowry A, Gillingham B, Chambers H (2008) Biomechanical comparison of four different fixation techniques for pediatric tibial eminence avulsion fractures. J Pediatr Orthop 28(2):159–162

    Article  PubMed  Google Scholar 

  15. Scheibel M, Dröschel S, Gerhardt C, Kraus N (2011) Arthroscopically assisted stabilization of acute high-grade acromioclavicular joint separations. Am J Sports Med 39(7):1507–1516

    Article  PubMed  Google Scholar 

  16. Naqvi GA, Shafqat A, Awan N (2012) Tightrope fixation of ankle syndesmosis injuries: clinical outcome, complications and technique modification. Injury 43(6):838–842

    Article  PubMed  Google Scholar 

  17. Schepers T (2012) Acute distal tibiofibular syndesmosis injury: a systematic review of suture-button versus syndesmotic screw repair. Int Orthop 36(6):1199–1206

    Article  PubMed  Google Scholar 

  18. Meyers MH, McKeever FM (1970) Fracture of the intercondylar eminence of the tibia. J Bone Joint Surg Am 52(8):1677–1684

    PubMed  CAS  Google Scholar 

  19. Nurmi JT, Sievänen H, Kannus P, Järvinen M, Järvinen TLN (2004) Porcine tibia is a poor substitute for human cadaver tibia for evaluating interference screw fixation. Am J Sports Med 32(3):765–771

    Article  PubMed  Google Scholar 

  20. May JH, Levy BA, Guse D, Shah J, Stuart MJ, Dahm DL (2011) ACL tibial spine avulsion: mid-term outcomes and rehabilitation. Orthopedics 34(2):89. doi:10.3928/01477447-20101221-10

    PubMed  Google Scholar 

  21. Montgomery KD, Cavanaugh J, Cohen S, Wickiewicz TL, Warren RF, Blevens F (2002) Motion complications after arthroscopic repair of anterior cruciate ligament avulsion fractures in the adult. Arthroscopy 18(2):171–176

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

Arthrex supported the work. No financial biases exist for any author. The authors, their immediate family, and any research foundation with which they are affiliated did not receive other benefits from any commercial entity related to the subject of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Ettinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ezechieli, M., Schäfer, M., Becher, C. et al. Biomechanical comparison of different fixation techniques for reconstruction of tibial avulsion fractures of the anterior cruciate ligament. International Orthopaedics (SICOT) 37, 919–923 (2013). https://doi.org/10.1007/s00264-013-1835-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-013-1835-3

Keywords

Navigation