Skip to main content
Log in

Quantitative CT with finite element analysis: towards a predictive tool for bone remodelling around an uncemented tapered stem

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

We used quantitative CT in conjunction with finite element analysis to provide a new tool for assessment of bone quality after total hip arthroplasty in vivo. The hypothesis of this prospective five-year study is that the combination of the two modalities allows 3D patient-specific imaging of cortical and cancellous bone changes and stress shielding.

Method

We tested quantitative CT in conjunction with finite elements on a cohort of 29 patients (31 hips) who have been scanned postoperatively and at one year, two years and five years follow-up. The method uses cubic Hermite finite element interpolation for efficient mesh generation directly from qCT datasets. The element Gauss points that are used for the geometric interpolation functions are also used for interpolation of osteodensitometry data.

Results

The study showed changes of bone density suggestive of proximal femur diaphysis load transfer with osteointegration and moderate metaphyseal stress shielding. Our model revealed that cortical bone initially became porous in the greater trochanter, but this phenomenon progressed to the cortex of the lesser trochanter and the posterior aspect of the metaphysis. The diaphyseal area did not experience major change in bone density for either cortical or cancellous bone.

Conclusion

The combination of quantitative CT with finite element analysis allows visualization of changes to bone density and architecture. It also provides correlation of bone density/architectural changes with stress patterns enabling the study of the effects of stress shielding on bone remodelling in vivo. This technology can be useful in predicting bone remodeling and the quality of implant fixation using prostheses with different design and/or biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bobyn JD, Engh CA, Glassman AH (1987) Histologic analysis of a retrieved microporous-coated femoral prosthesis. A seven-year case report. Clin Orthop Relat Res (224):303

  2. Engh CA, Bobyn JD, Glassman AH (1997) Porous-coated hip replacement. The factors governing bone ingrowth, stress shielding, and clinical results. J Bone Joint Surg Br 69(1):45

    Google Scholar 

  3. Jacobs CR, Simo JC, Beaupre GS, Carter DR (1997) Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations. J Biomech 30(6):603

    Article  PubMed  CAS  Google Scholar 

  4. Oh I, Carlson CE, Tomford WW, Harris WH (1978) Improved fixation of the femoral component after total hip replacement using a methacrylate intramedullary plug. J Bone Joint Surg Am 60(5):608

    PubMed  CAS  Google Scholar 

  5. Rüegsegger P, Koller B, Müller R (1996) A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Int 58(1):24

    Article  PubMed  Google Scholar 

  6. Cody DD, Gross GJ, Hou FJ, Spencer HJ, Goldstein SA, Fyhrie DP (1999) Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech 32(10):1013

    Article  PubMed  CAS  Google Scholar 

  7. Crawford RP, Cann CE, Keaveny TM (2003) Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 33(4):744

    Article  PubMed  Google Scholar 

  8. Pandit S, Graydon A, Bradley L, Walker C, Munro J, Pitto RP (2006) CT-osteodensitometry in modern uncemented taper-design stem with hydroxyapatite coating. Australia and New Zealand. J Surg 76:778

    Google Scholar 

  9. Pitto RP, Bhargava A, Pandit S, Walker C, Munro JT (2008) Quantitative CT-assisted osteodensitometry of femoral adaptive bone remodelling after uncemented total hip arthroplasty. Int Orthop 32(5):589

    Article  PubMed  Google Scholar 

  10. Pitto RP, Hayward A, Walker C, Shim VB (2009) Femoral bone density changes after total hip arthroplasty with uncemented taper-design stem. Int Orthop 34(6):783–787

    Google Scholar 

  11. Bradley CP, Pullan AJ, Hunter PJ (1997) Geometric modeling of the human torso using cubic hermite elements. Ann Biomed Eng 25(1):96

    Article  PubMed  CAS  Google Scholar 

  12. Shim VB, Pitto RP, Streicher RM, Hunter PJ, Anderson IA (2008) Development and validation of patient-specific finite element models of the hemipelvis generated from a sparse CT data set. J Biomech Eng 130(5)

  13. Fernandez JW, Mithraratne P, Thrupp SF, Tawhai MH, Hunter PJ (2004) Anatomically based geometric modelling of the musculo-skeletal system and other organs. Biomech Model Mechanobiol 2(3):139

    Article  PubMed  CAS  Google Scholar 

  14. Keller TS (1994) Predicting the compressive mechanical behavior of bone. J Biomech 27(9):1159

    Article  PubMed  CAS  Google Scholar 

  15. Herrera A, Panisello JJ, Ibarz E, Cegonino J, Puertolas JA, Gracia L (2007) Long-term study of bone remodelling after femoral stem: a comparison between dexa and finite element simulation. J Biomech 40(16):3615

    Article  PubMed  Google Scholar 

  16. Herrera A, Panisello JJ, Ibarz E, Cegonino J, Puertolas JA, Gracia L (2009) Comparison between DEXA and finite element studies in the long-term bone remodeling of an anatomical femoral stem. J Biomech Eng 131(4):041013

    Article  PubMed  CAS  Google Scholar 

  17. Lengsfeld M, Burchard R, Gunther D, Pressel T, Schmitt J, Leppek R, Griss P (2005) Femoral strain changes after total hip arthroplasty—patient-specific finite element analyses 12 years after operation. Med Eng Phys 27(8):649

    Article  PubMed  Google Scholar 

  18. Shim V, Bohme J, Vaitl P, Klima S, Josten C, Anderson I (2010) Finite element analysis of acetabular fractures—development and validation with a synthetic pelvis. J Biomech 43(8):1635

    Article  PubMed  Google Scholar 

  19. Stolk J, Verdonschot N, Huiskes R (2001) Hip-joint and abductor-muscle forces adequately represent in vivo loading of a cemented total hip reconstruction. J Biomech 34(7):917

    Article  PubMed  CAS  Google Scholar 

  20. Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda GN (2001) Hip contact forces and gain patterns from routine activities. J Biomech 34:859–871

    Article  PubMed  CAS  Google Scholar 

  21. Shirazi-Adl A, Dammak M, Paiement G (1993) Experimental determination of friction characteristics at the trabecular bone/porous-coated metal interface in cementless implants. J Biomed Mater Res 27(2):167

    Article  PubMed  CAS  Google Scholar 

  22. Kerner J, Huiskes R, van Lenthe GH, Weinans H, van Rietbergen B, Engh CA, Amis AA (1999) Correlation between pre-operative periprosthetic bone density and post-operative bone loss in THA can be explained by strain-adaptive remodelling. J Biomech 32(7):695

    Article  PubMed  CAS  Google Scholar 

  23. Turner AWL, Gillies RM, Sekel R, Morris P, Bruce W, Walsh WR (2005) Computational bone remodelling simulations and comparisons with DEXA results. J Orthop Res 23(4):705

    Article  PubMed  CAS  Google Scholar 

  24. Huiskes R, Weinans H, Grootenboer HJ, Dalstra M, Fudala B, Slooff TJ (1987) Adaptive bone-remodeling theory applied to prosthetic-design analysis. J Biomech 20(11–12):1135

    Article  PubMed  CAS  Google Scholar 

  25. Draenert K (1988) Forschung und Fortbildung in der Chirurgie des Bewegungsapparates 2. Kastner & Callwey, Munich

    Google Scholar 

  26. Maloney WJ, Sychterz C, Bragdon C, McGovern T, Jasty M, Engh CA, Harris WH (1996) The Otto Aufranc Award. Skeletal response to well fixed femoral components inserted with and without cement. Clin Orthop Relat Res (333):15

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocco P. Pitto.

Additional information

One or more of the authors have received funding from the Wishbone Trust New Zealand and Stevenson Charitable Trust (RPP).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shim, V.B., Pitto, R.P. & Anderson, I.A. Quantitative CT with finite element analysis: towards a predictive tool for bone remodelling around an uncemented tapered stem. International Orthopaedics (SICOT) 36, 1363–1369 (2012). https://doi.org/10.1007/s00264-012-1513-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-012-1513-x

Keywords

Navigation