Skip to main content
Log in

The use of fibre-based demineralised bone matrix in major acetabular reconstruction: surgical technique and preliminary results

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Acetabular osteolysis associated with socket loosening is one of the main long-term complications of total hip arthroplasty. In case of major bone loss, where <50% host bone coverage can be obtained with a porous-coated cementless cup, it is generally agreed that a metal ring or cage in association with a cemented component and allograft bone should be used. In order to promote allograft bone consolidation and incorporation, we have associated demineralised bone matrix (DBM, Grafton® A Flex) to the construct ion. Here we describe the technical details of major acetabular reconstruction using the Kerboull acetabular reinforcement device with allograft bone and DBM. This device has a hook that must be placed under the teardrop of the acetabulum and a plate for iliac fixation. The main advantages of this device are help in restoring the normal centre of hip rotation, guiding the reconstruction and partially unloading the graft. The Kerboull acetabular reinforcement device has provided a 92% survival rate free of loosening at 13-year follow-up in a consecutive series of 60 type III and IV deficiencies. Our preliminary results using DBM indicate faster allograft consolidation and remodelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Comba F, Buttaro M, Pusso R, Piccaluga F (2009) Acetabular revision surgery with impacted bone allografts and cemented cups in patients younger than 55 years. Int Orthop 33:611–616

    Article  PubMed  Google Scholar 

  2. Sun C, Lian YY, Jin YH, Zhao CB, Pan SQ, Liu XF (2009) Clinical and radiographic assessment of cementless acetabular revision with morsellised allografts. Int Orthop 33:1525–1530

    Article  PubMed  Google Scholar 

  3. Vargas B, Caton J (2009) Acetabular revision with freeze-dried irradiated and chemically treated allograft: a minimum 5-year follow-up of 17 cases. Int Orthop 33:35–39

    Article  PubMed  Google Scholar 

  4. Paprosky WG, Perona PG, Lawrence JM (1994) Acetabular defect classification and surgical reconstruction in revision arthroplasty. A 6-year follow-up evaluation. J Arthroplasty 9:33–44

    Article  CAS  PubMed  Google Scholar 

  5. D’Antonio JA, Capello WN, Borden LS, Bargar WL, Bierbaum BF, Boettcher WG, Steinberg ME, Stulberg SD, Wedge JH (1989) Classification and management of acetabular abnormalities in total hip arthroplasty. Clin Orthop Relat Res 243:126–137

    PubMed  Google Scholar 

  6. Cabanela ME (1998) Reconstruction rings and bone graft in total hip revision surgery. Orthop Clin North Am 29:255–262

    Article  CAS  PubMed  Google Scholar 

  7. Kerboull M (1985) Revision surgery for aseptic loosening of total hip replacement. In: Postel M, Kerboull M, Evrard J, Courpied JP (eds) Acetabular reconstruction, Total hip replacement. Springer Verlag, Berlin, pp 85–90

    Google Scholar 

  8. Koch P, Tannast M, Fujita H, Siebenrock K, Ganz R (2008) Minimum ten year results of total hip arthroplasty with the acetabular reinforcement ring in avascular osteonecrosis. Int Orthop 32:173–179

    Article  PubMed  Google Scholar 

  9. Berry DJ, Muller ME (1992) Revision arthroplasty using an anti-protrusio cage for massive acetabular bone deficiency. J Bone Joint Surg Br 74:711–715

    CAS  PubMed  Google Scholar 

  10. Baba T, Shitoto K (2010) Revision of total hip arthroplasty using the Kerboull and KT plates. Int Orthop 34:341–347

    Article  PubMed  Google Scholar 

  11. Kawai T, Tanaka C, Ikenaga M, Kanoe H, Okudaira S (2010) Total hip arthroplasty using Kerboull-type acetabular reinforcement device for rapidly destructive coxarthrosis. J Arthroplasty 25:432–436

    Article  PubMed  Google Scholar 

  12. Kawanabe K, Akiyama H, Onishi E, Nakamura T (2007) Revision total hip replacement using the Kerboull acetabular reinforcement device with morsellised or bulk graft: results at a mean follow-up of 8.7 years. J Bone Joint Surg Br 89:26–31

    CAS  PubMed  Google Scholar 

  13. Okano K, Miyata N, Enomoto H, Osaki M, Shindo H (2010) Revision with impacted bone allografts and the Kerboull cross plate for massive bone defect of the acetabulum. J Arthroplasty 25:594–599

    Article  PubMed  Google Scholar 

  14. Tanaka C, Shikata J, Ikenaga M, Takahashi M (2003) Acetabular reconstruction using a Kerboull-type acetabular reinforcement device and hydroxyapatite granules: a 3- to 8-year follow-up study. J Arthroplasty 18:719–725

    Article  PubMed  Google Scholar 

  15. Lunn J, Kearns SS, Quinlan W, Murray P, Byrne O (2005) J Impaction allografting and the Kerboull acetabular reinforcement device. 35 hips followed for 3-7 years. Acta Orthopedica 76:298–302

    Google Scholar 

  16. Urist M, Silverman BF, Buring K, Dubuc FL, Rosenberg JM (1967) The bone induction principle. Clin Orthop Relat Res 53:243–283

    Article  CAS  PubMed  Google Scholar 

  17. Cammisa FP, Lowery G, Garfin SR, Geisler FH, Klara PM, McGuire RA, Sassard WR, Stubbs H, Block JE (2004) Two-year fusion rate equivalency between Grafton DBM gel and autograft in posterolateral spine fusion: a prospective controlled trial employing a side-by-side comparison in the same patient. Spine 29:660–666

    Article  PubMed  Google Scholar 

  18. Khan SN, Fraser JF, Sandhu HS, Cammisa FP, Girardi FP, Lane JM (2005) Use of osteopromotive growth factors, demineralized bone matrix, and ceramics to enhance spinal fusion. J Am Acad Orthop Surg 13:129–137

    PubMed  Google Scholar 

  19. Louis-Ugbo J, Murakami H, Kim HS, Minamide A, Boden SD (2004) Evidence of osteoinduction by Grafton demineralized bone matrix in nonhuman primate spinal fusion. Spine 29:360–366

    Article  PubMed  Google Scholar 

  20. Martin GJ, Boden SD, Titus L, Scarborough NL (1999) New formulations of demineralized bone matrix as a more effective graft alternative in experimental posterolateral lumbar spine arthrodesis. Spine 24:637–645

    Article  PubMed  Google Scholar 

  21. Peterson B, Whang PG, Iglesias R, Wang JC, Lieberman JR (2004) Osteoinductivity of commercially available demineralized bone matrix. Preparations in a spine fusion model. J Bone Joint Surg Am 86:2243–2250

    PubMed  Google Scholar 

  22. Hierholzer C, Sama D, Toro JB, Peterson M, Helfet DL (2006) Plate fixation of ununited humeral shaft fractures: effect of type of bone graft on healing. J Bone Joint Surg Am 88:1442–1447

    Article  PubMed  Google Scholar 

  23. Delp SL, Wixson RL, Komattu AV, Kocmond JH (1996) How superior placement of the joint center in hip arthroplasty affects the abductor muscles. Clin Orthop Relat Res 328:137–146

    Article  PubMed  Google Scholar 

  24. Johnston RC, Brand RA, Crowninshield RD (1979) Reconstruction of the hip. A mathematical approach to determine optimum geometric relationships. J Bone Joint Surg Am 61:639–652

    CAS  PubMed  Google Scholar 

  25. Yoder SA, Brand RA, Pedersen DR, O’Gorman TW (1988) Total hip acetabular component position affects component loosening rates. Clin Orthop Relat Res 228:79–87

    PubMed  Google Scholar 

  26. Doehring TC, Rubash HE, Shelley FJ, Schwendeman LJ, Donaldson TK, Navalgund YA (1996) Effect of superior and superolateral relocations of the hip center on hip joint forces. An experimental and analytical analysis. J Arthroplasty 11:693–703

    Article  CAS  PubMed  Google Scholar 

  27. Kennedy JG, Rogers WB, Soffe KE, Sullivan RJ, Griffen DG, Sheehan LJ (1998) Effect of acetabular component orientation on recurrent dislocation, pelvic osteolysis, polyethylene wear, and component migration. J Arthroplasty 13:530–534

    Article  CAS  PubMed  Google Scholar 

  28. Schmalzried TP, Guttmann D, Grecula M, Amstutz HC (1994) The relationship between the design, position, and articular wear of acetabular components inserted without cement and the development of pelvic osteolysis. J Bone Joint Surg Am 76:677–688

    CAS  PubMed  Google Scholar 

  29. Udomkiat P, Dorr LD, Won YY, Longjohn D, Wan Z (2001) Technical factors for success with metal ring acetabular reconstruction. J Arthroplasty 16:961–969

    Article  CAS  PubMed  Google Scholar 

  30. Kerboull M, Hamadouche M, Kerboul L (2000) The Kerboull acetabular reinforcement device in major acetabular reconstructions. Clin Orthop Relat Res 378:155–168

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moussa Hamadouche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamadouche, M., Karoubi, M., Dumaine, V. et al. The use of fibre-based demineralised bone matrix in major acetabular reconstruction: surgical technique and preliminary results. International Orthopaedics (SICOT) 35, 283–288 (2011). https://doi.org/10.1007/s00264-010-1145-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-010-1145-y

Keywords

Navigation