Skip to main content

Advertisement

Log in

Reovirus combined with a STING agonist enhances anti-tumor immunity in a mouse model of colorectal cancer

  • Research
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Reovirus, a naturally occurring oncolytic virus, initiates the lysis of tumor cells while simultaneously releasing tumor antigens or proapoptotic cytokines in the tumor microenvironment to augment anticancer immunity. However, reovirus has developed a strategy to evade antiviral immunity via its inhibitory effect on interferon production, which negatively affects the induction of antitumor immune responses. The mammalian adaptor protein Stimulator of Interferon Genes (STING) was identified as a key regulator that orchestrates immune responses by sensing cytosolic DNA derived from pathogens or tumors, resulting in the production of type I interferon. Recent studies reported the role of STING in innate immune responses to RNA viruses leading to the restriction of RNA virus replication. In the current study, we found that reovirus had a reciprocal reaction with a STING agonist regarding type I interferon responses in vitro; however, we found that the combination of reovirus and STING agonist enhanced anti-tumor immunity by enhancing cytotoxic T cell trafficking into tumors, leading to significant tumor regression and survival benefit in a syngeneic colorectal cancer model. Our data indicate the combination of reovirus and a STING agonist to enhance inflammation in the tumor microenvironment might be a strategy to improve oncolytic reovirus immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

The data supporting this study's findings are available from the corresponding author (E.K.) upon reasonable request.

Abbreviations

CRC:

Colorectal cancer

cGAMP:

Cyclic GMP-AMP

cGAS:

Cyclic GMP-AMP synthase

dsDNA:

Double-stranded DNA

FACS:

Fluorescence-activated cell sorting

iNOS:

Inducible nitric oxide synthesis

IFN:

Interferon

IT:

Intratumoral

MOI:

Multiplicity of infection

MSI:

Microsatellite instability

pfu:

Plaque-forming units

PBS:

Phosphate buffered saline

PD-1:

Programmed cell death 1

PD-L1:

Programmed cell death ligand 1

RT-PCR:

Reverse transcription–polymerase chain reaction

STING:

Stimulator of Interferon Genes

TAMs:

Tumor-associated macrophages

References

  1. Hashiro G, Loh PC, Yau JT (1977) The preferential cytotoxicity of reovirus for certain transformed cell lines. Arch Virol 54:307–315. https://doi.org/10.1007/BF01314776

    Article  CAS  PubMed  Google Scholar 

  2. Duncan MR, Stanish SM, Cox DC (1978) Differential sensitivity of normal and transformed human cells to reovirus infection. J Virol 28:444–449. https://doi.org/10.1128/JVI.28.2.444-449.1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Strong JE, Lee PW (1996) The v-erbB oncogene confers enhanced cellular susceptibility to reovirus infection. J Virol 70:612–616. https://doi.org/10.1128/JVI.70.1.612-616.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Coffey MC, Strong JE, Forsyth PA, Lee PW (1998) Reovirus therapy of tumors with activated Ras pathway. Science 282:1332–1334. https://doi.org/10.1126/science.282.5392.1332

    Article  CAS  PubMed  Google Scholar 

  5. Hamano S, Mori Y, Aoyama M et al (2015) Oncolytic reovirus combined with trastuzumab enhances antitumor efficacy through TRAIL signaling in human HER2-positive gastric cancer cells. Cancer Lett 356:846–854. https://doi.org/10.1016/j.canlet.2014.10.046

    Article  CAS  PubMed  Google Scholar 

  6. Inagaki Y, Kubota E, Mori Y, Aoyama M, Kataoka H, Johnston RN, Joh T (2017) Anti-tumor efficacy of oncolytic reovirus against gastrointestinal stromal tumor cells. Oncotarget 8:115632–115646. https://doi.org/10.18632/oncotarget.23361

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lawson KA, Mostafa AA, Shi ZQ, Spurrell J, Chen W, Kawakami J, Gratton K, Thakur S, Morris DG (2016) Repurposing sunitinib with oncolytic reovirus as a novel immunotherapeutic strategy for renal cell carcinoma. Clin Cancer Res 22:5839–5850. https://doi.org/10.1158/1078-0432.CCR-16-0143

    Article  CAS  PubMed  Google Scholar 

  8. Prestwich RJ, Errington F, Ilett EJ et al (2008) Tumor infection by oncolytic reovirus primes adaptive antitumor immunity. Clin Cancer Res 14:7358–7366. https://doi.org/10.1158/1078-0432.CCR-08-0831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Prestwich RJ, Ilett EJ, Errington F et al (2009) Immune-mediated antitumor activity of reovirus is required for therapy and is independent of direct viral oncolysis and replication. Clin Cancer Res 15:4374–4381. https://doi.org/10.1158/1078-0432.CCR-09-0334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rajani K, Parrish C, Kottke T et al (2016) Combination therapy with reovirus and anti-PD-1 blockade controls tumor growth through innate and adaptive immune responses. Mol Ther 24:166–174. https://doi.org/10.1038/mt.2015.156

    Article  CAS  PubMed  Google Scholar 

  11. Ilett E, Kottke T, Thompson J et al (2017) Prime-boost using separate oncolytic viruses in combination with checkpoint blockade improves anti-tumour therapy. Gene Ther 24:21–30. https://doi.org/10.1038/gt.2016.70

    Article  CAS  PubMed  Google Scholar 

  12. Kelly KR, Espitia CM, Zhao W, Wu K, Visconte V, Anwer F, Calton CM, Carew JS, Nawrocki ST (2018) Oncolytic reovirus sensitizes multiple myeloma cells to anti-PD-L1 therapy. Leukemia 32:230–233. https://doi.org/10.1038/leu.2017.272

    Article  CAS  PubMed  Google Scholar 

  13. Groeneveldt C, Kinderman P, van den Wollenberg DJM et al (2020) Preconditioning of the tumor microenvironment with oncolytic reovirus converts CD3-bispecific antibody treatment into effective immunotherapy. J Immunother Cancer. https://doi.org/10.1136/jitc-2020-001191

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sherry B (2009) Rotavirus and reovirus modulation of the interferon response. J Interferon Cytokine Res 29:559–567. https://doi.org/10.1089/jir.2009.0072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stanifer ML, Kischnick C, Rippert A, Albrecht D, Boulant S (2017) Reovirus inhibits interferon production by sequestering IRF3 into viral factories. Sci Rep 7:10873. https://doi.org/10.1038/s41598-017-11469-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Corrales L, Glickman LH, McWhirter SM et al (2015) Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep 11:1018–1030. https://doi.org/10.1016/j.celrep.2015.04.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ramanjulu JM, Pesiridis GS, Yang J et al (2018) Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature 564:439–443. https://doi.org/10.1038/s41586-018-0705-y

    Article  CAS  PubMed  Google Scholar 

  18. Berard A, Coombs KM (2009) Mammalian reoviruses: propagation, quantification, and storage. Curr Protoc Microbiol Chapter 15(Unit15C):1. https://doi.org/10.1002/9780471729259.mc15c01s14

    Article  Google Scholar 

  19. Shi P, Zhong J, Hong J, Huang R, Wang K, Chen Y (2016) Automated Ki-67 quantification of immunohistochemical staining image of human nasopharyngeal carcinoma xenografts. Sci Rep 6:32127. https://doi.org/10.1038/srep32127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morgan E, Arnold M, Gini A et al (2023) Global burden of colorectal cancer in 2020 and 2040: incidence and mortality estimates from GLOBOCAN. Gut 72:338–344. https://doi.org/10.1136/gutjnl-2022-327736

    Article  PubMed  Google Scholar 

  21. Marcus L, Lemery SJ, Keegan P, Pazdur R (2019) FDA approval summary: pembrolizumab for the treatment of microsatellite instability-high solid tumors. Clin Cancer Res 25:3753–3758. https://doi.org/10.1158/1078-0432.CCR-18-4070

    Article  CAS  PubMed  Google Scholar 

  22. Kawakami H, Zaanan A, Sinicrope FA (2015) Microsatellite instability testing and its role in the management of colorectal cancer. Curr Treat Options Oncol 16:30. https://doi.org/10.1007/s11864-015-0348-2

    Article  PubMed  PubMed Central  Google Scholar 

  23. Muller MF, Ibrahim AE, Arends MJ (2016) Molecular pathological classification of colorectal cancer. Virchows Arch 469:125–134. https://doi.org/10.1007/s00428-016-1956-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hirasawa K, Nishikawa SG, Norman KL, Alain T, Kossakowska A, Lee PW (2002) Oncolytic reovirus against ovarian and colon cancer. Cancer Res 62:1696–1701

    CAS  PubMed  Google Scholar 

  25. Adair RA, Scott KJ, Fraser S et al (2013) Cytotoxic and immune-mediated killing of human colorectal cancer by reovirus-loaded blood and liver mononuclear cells. Int J Cancer 132:2327–2338. https://doi.org/10.1002/ijc.27918

    Article  CAS  PubMed  Google Scholar 

  26. Gebremeskel S, Nelson A, Walker B, Oliphant T, Lobert L, Mahoney D, Johnston B (2021) Natural killer T cell immunotherapy combined with oncolytic vesicular stomatitis virus or reovirus treatments differentially increases survival in mouse models of ovarian and breast cancer metastasis. J Immunother Cancer. https://doi.org/10.1136/jitc-2020-002096

  27. van den Wollenberg DJ, van den Hengel SK, Dautzenberg IJ, Cramer SJ, Kranenburg O, Hoeben RC (2008) A strategy for genetic modification of the spike-encoding segment of human reovirus T3D for reovirus targeting. Gene Ther 15:1567–1578. https://doi.org/10.1038/gt.2008.118

    Article  CAS  PubMed  Google Scholar 

  28. Kawagishi T, Kanai Y, Nouda R, Fukui I, Nurdin JA, Matsuura Y, Kobayashi T (2020) Generation of genetically RGD sigma1-modified oncolytic reovirus that enhances JAM-A-independent infection of tumor cells. J Virol. https://doi.org/10.1128/JVI.01703-20

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kottke T, Hall G, Pulido J et al (2010) Antiangiogenic cancer therapy combined with oncolytic virotherapy leads to regression of established tumors in mice. J Clin Invest 120:1551–1560. https://doi.org/10.1172/JCI41431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Roulstone V, Pedersen M, Kyula J et al (2015) BRAF- and MEK-targeted small molecule inhibitors exert enhanced antimelanoma effects in combination with oncolytic reovirus through ER stress. Mol Ther 23:931–942. https://doi.org/10.1038/mt.2015.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gong J, Sachdev E, Mita AC, Mita MM (2016) Clinical development of reovirus for cancer therapy: an oncolytic virus with immune-mediated antitumor activity. World J Methodol 6:25–42. https://doi.org/10.5662/wjm.v6.i1.25

    Article  PubMed  PubMed Central  Google Scholar 

  32. Parakrama R, Fogel E, Chandy C, Augustine T, Coffey M, Tesfa L, Goel S, Maitra R (2020) Immune characterization of metastatic colorectal cancer patients post reovirus administration. BMC Cancer 20:569. https://doi.org/10.1186/s12885-020-07038-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Castle JC, Loewer M, Boegel S et al (2014) Immunomic, genomic and transcriptomic characterization of CT26 colorectal carcinoma. BMC Genomics 15:190. https://doi.org/10.1186/1471-2164-15-190

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yu JW, Bhattacharya S, Yanamandra N et al. (2018) Tumor-immune profiling of murine syngeneic tumor models as a framework to guide mechanistic studies and predict therapy response in distinct tumor microenvironments. PLoS One 13:e0206223. https://doi.org/10.1371/journal.pone.0206223

  35. Woo SR, Corrales L, Gajewski TF (2015) The STING pathway and the T cell-inflamed tumor microenvironment. Trends Immunol 36:250–256. https://doi.org/10.1016/j.it.2015.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sivick KE, Desbien AL, Glickman LH et al. (2018) Magnitude of therapeutic STING activation determines CD8(+) T cell-mediated anti-tumor immunity. Cell Rep 25: 3074–85. https://doi.org/10.1016/j.celrep.2018.11.047

  37. Phillips MB, Stuart JD, Rodriguez Stewart RM, Berry JT, Mainou BA, Boehme KW (2018) Current understanding of reovirus oncolysis mechanisms. Oncolytic Virother 7:53–63. https://doi.org/10.2147/OV.S143808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ishikawa H, Barber GN (2008) STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455:674–678. https://doi.org/10.1038/nature07317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ishikawa H, Ma Z, Barber GN (2009) STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461:788–792. https://doi.org/10.1038/nature08476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zevini A, Olagnier D, Hiscott J (2017) Crosstalk between cytoplasmic RIG-I and STING sensing pathways. Trends Immunol 38:194–205. https://doi.org/10.1016/j.it.2016.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ni G, Ma Z, Damania B (2018) cGAS and STING: at the intersection of DNA and RNA virus-sensing networks. PLoS Pathog 14:e1007148. https://doi.org/10.1371/journal.ppat.1007148

  42. Franz KM, Neidermyer WJ, Tan YJ, Whelan SPJ, Kagan JC (2018) STING-dependent translation inhibition restricts RNA virus replication. Proc Natl Acad Sci U S A 115:E2058–E2067. https://doi.org/10.1073/pnas.1716937115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Farone AL, O’Brien PC, Cox DC (1993) Tumor necrosis factor-alpha induction by reovirus serotype 3. J Leukoc Biol 53:133–137. https://doi.org/10.1002/jlb.53.2.133

    Article  CAS  PubMed  Google Scholar 

  44. Hayman TJ, Baro M, MacNeil T et al (2021) STING enhances cell death through regulation of reactive oxygen species and DNA damage. Nat Commun 12:2327. https://doi.org/10.1038/s41467-021-22572-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kwon J, Bakhoum SF (2020) The cytosolic DNA-sensing cGAS-STING pathway in cancer. Cancer Discov 10:26–39. https://doi.org/10.1158/2159-8290.CD-19-0761

    Article  CAS  PubMed  Google Scholar 

  46. Kitajima S, Ivanova E, Guo S et al (2019) Suppression of STING associated with LKB1 loss in KRAS-driven lung cancer. Cancer Discov 9:34–45. https://doi.org/10.1158/2159-8290.CD-18-0689

    Article  CAS  PubMed  Google Scholar 

  47. Katayama Y, Tachibana M, Kurisu N et al (2018) Oncolytic reovirus inhibits immunosuppressive activity of myeloid-derived suppressor cells in a TLR3-dependent manner. J Immunol 200:2987–2999. https://doi.org/10.4049/jimmunol.1700435

    Article  CAS  PubMed  Google Scholar 

  48. Samson A, Bentham MJ, Scott K et al (2018) Oncolytic reovirus as a combined antiviral and anti-tumour agent for the treatment of liver cancer. Gut 67:562–573. https://doi.org/10.1136/gutjnl-2016-312009

    Article  CAS  PubMed  Google Scholar 

  49. Annels NE, Simpson GR, Denyer M, Arif M, Coffey M, Melcher A, Harrington K, Vile R, Pandha H (2021) Oncolytic reovirus-mediated recruitment of early innate immune responses reverses immunotherapy resistance in prostate tumors. Mol Ther Oncolytics 20:434–446. https://doi.org/10.1016/j.omto.2020.09.010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Mrs. Yukimi Ito from Nagoya City University for her technical assistance. We thank J. Ludovic Croxford, PhD, from Edanz Group (https://en-author-services.edanzgroup.com/ac) for editing a draft of this manuscript.

Funding

This work was supported by Grants-in-Aid for Scientific Research (C) from the Japan Society for the Promotion of Science (JSPS), KAKENHI Grant Number 18K07951and 22K16002.

Author information

Authors and Affiliations

Authors

Contributions

SN, EK, YM, and HK were involved with the conception and performance of experiments, statistical analysis, and writing the manuscript. MT, TS, and ST assisted with some of the experiments. RNJ and MA were involved with the conception and design of experiments. All authors reviewed and edited the manuscript.

Corresponding author

Correspondence to Eiji Kubota.

Ethics declarations

Conflict of interest

All authors state that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugimura, N., Kubota, E., Mori, Y. et al. Reovirus combined with a STING agonist enhances anti-tumor immunity in a mouse model of colorectal cancer. Cancer Immunol Immunother 72, 3593–3608 (2023). https://doi.org/10.1007/s00262-023-03509-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-023-03509-0

Keywords

Navigation