Skip to main content

Advertisement

Log in

Brachyury-targeted immunotherapy combined with gemcitabine against head and neck cancer

  • Research
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Brachyury is a transcription factor belonging to the T-box gene family and is involved in the posterior formation of the mesoderm and differentiation of chordates. As the overexpression of Brachyury is a poor prognostic factor in a variety of cancers, the establishment of Brachyury-targeted therapy would be beneficial for the treatment of aggressive tumors. Because transcription factors are difficult to treat with a therapeutic antibody, peptide vaccines are a feasible approach for targeting Brachyury. In this study, we identified Brachyury-derived epitopes that elicit antigen-specific and tumor-reactive CD4+ T cells that directly kill tumors. T cells recognizing Brachyury epitopes were present in patients with head and neck squamous cell carcinoma. Next, we focused on gemcitabine (GEM) as an immunoadjuvant to augment the efficacy of antitumor responses by T cells. Interestingly, GEM upregulated HLA class I and HLA-DR expression in tumor, followed by the upregulation of anti-tumor T cell responses. As tumoral PD-L1 expression was also augmented by GEM, PD-1/PD-L1 blockade and GEM synergistically enhanced the tumor-reactivity of Brachyury-reactive T cells. The synergy between the PD-1/PD-L1 blockade and GEM was also confirmed in a mouse model of head and neck squamous cell carcinoma. These results suggest that the combined treatment of Brachyury peptide with GEM and immune checkpoint blockade could be a promising immunotherapy against head and neck cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data relevant to the study are included in the article or uploaded as supplementary information.

Abbreviations

Abs:

Antibodies

ATP:

Adenosine triphosphate

APC:

Antigen-presenting cell

CDDP:

Cisplatin

CTL:

CD8+ cytotoxic T lymphocyte

DAMPs:

Damage-associated molecular patterns

DC:

Dendritic cell

E:T:

Effector:Target

EMT:

Epithelial-mesenchymal transition

GEM:

Gemcitabine

HMGB1:

High mobility group box 1

HNSCC:

Head and neck squamous cell carcinoma

HTL:

CD4+ helper T lymphocyte

ICI:

Immune checkpoint inhibitor

mAb:

Monoclonal antibody

MFI:

Mean fluorescence intensity

NLR:

Neutrophil–Lymphocyte ratio

PBMC:

Peripheral blood mononuclear cell

SD:

Standard deviation

SUV:

Standardized uptake value

TILs:

Tumor infiltrating lymphocytes

References

  1. Hayes RB, Ahn J, Fan X et al (2018) Association of oral microbiome with risk for incident head and neck squamous cell cancer. JAMA Oncol 4:358–365. https://doi.org/10.1001/jamaoncol.2017.4777

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  3. Zhuang RY, Xu HG (2020) Head and neck cancer. N Engl J Med 382:e57. https://doi.org/10.1056/NEJMc2001370

    Article  PubMed  Google Scholar 

  4. Conley BA (2006) Treatment of advanced head and neck cancer: What lessons have we learned? J Clin Oncol 24:1023–1025. https://doi.org/10.1200/JCO.2005.05.0682

    Article  PubMed  Google Scholar 

  5. Botticelli A, Cirillo A, Strigari L et al (2021) Anti-PD-1 and anti-PD-L1 in head and neck cancer: A network meta-analysis. Front Immunol 12:705096. https://doi.org/10.3389/fimmu.2021.705096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Oliva M, Spreafico A, Taberna M, Alemany L, Coburn B, Mesia R, Siu LL (2019) Immune biomarkers of response to immune-checkpoint inhibitors in head and neck squamous cell carcinoma. Ann Oncol 30:57–67. https://doi.org/10.1093/annonc/mdy507

    Article  CAS  PubMed  Google Scholar 

  7. Palena C, Polev DE, Tsang KY, Fernando RI, Litzinger M, Krukovskaya LL, Baranova AV, Kozlov AP, Schlom J (2007) The human T-box mesodermal transcription factor Brachyury is a candidate target for T-cell-mediated cancer immunotherapy. Clin Cancer Res 13:2471–2478. https://doi.org/10.1158/1078-0432.CCR-06-2353

    Article  CAS  PubMed  Google Scholar 

  8. Roselli M, Fernando RI, Guadagni F et al (2012) Brachyury, a driver of the epithelial-mesenchymal transition, is overexpressed in human lung tumors: an opportunity for novel interventions against lung cancer. Clin Cancer Res 18:3868–3879. https://doi.org/10.1158/1078-0432.CCR-11-3211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Palena C, Roselli M, Litzinger MT et al (2014) Overexpression of the EMT driver brachyury in breast carcinomas: association with poor prognosis. J Natl Cancer Inst. https://doi.org/10.1093/jnci/dju054

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kilic N, Feldhaus S, Kilic E, Tennstedt P, Wicklein D, Wasielewski R, Viebahn C, Kreipe H, Schumacher U (2011) Brachyury expression predicts poor prognosis at early stages of colorectal cancer. Eur J Cancer 47:1080–1085. https://doi.org/10.1016/j.ejca.2010.11.015

    Article  PubMed  Google Scholar 

  11. Imajyo I, Sugiura T, Kobayashi Y, Shimoda M, Ishii K, Akimoto N, Yoshihama N, Kobayashi I, Mori Y (2012) T-box transcription factor Brachyury expression is correlated with epithelial-mesenchymal transition and lymph node metastasis in oral squamous cell carcinoma. Int J Oncol 41:1985–1995. https://doi.org/10.3892/ijo.2012.1673

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wei CH, Sherman LA (2007) N-terminal trimer extension of nominal CD8 T cell epitopes is sufficient to promote cross-presentation to cognate CD8 T cells in vivo. J Immunol 179:8280–8286. https://doi.org/10.4049/jimmunol.179.12.8280

    Article  CAS  PubMed  Google Scholar 

  13. Bijker MS, van den Eeden SJ, Franken KL, Melief CJ, van der Burg SH, Offringa R (2008) Superior induction of anti-tumor CTL immunity by extended peptide vaccines involves prolonged. DC-focused Antigen Present Eur J Immunol 38:1033–1042. https://doi.org/10.1002/eji.200737995

    Article  CAS  PubMed  Google Scholar 

  14. Cho HI, Barrios K, Lee YR, Linowski AK, Celis E (2013) BiVax: a peptide/poly-IC subunit vaccine that mimics an acute infection elicits vast and effective anti-tumor CD8 T-cell responses. Cancer Immunol Immunother 62:787–799. https://doi.org/10.1007/s00262-012-1382-6

    Article  CAS  PubMed  Google Scholar 

  15. Sultan H, Kumai T, Nagato T, Wu J, Salazar AM, Celis E (2019) The route of administration dictates the immunogenicity of peptide-based cancer vaccines in mice. Cancer Immunol Immunother 68:455–466. https://doi.org/10.1007/s00262-018-02294-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sultan H, Trillo-Tinoco J, Rodriguez P, Celis E (2017) Effective antitumor peptide vaccines can induce severe autoimmune pathology. Oncotarget 8:70317–70331. https://doi.org/10.18632/oncotarget.19688

    Article  PubMed  PubMed Central  Google Scholar 

  17. Barrios K, Celis E (2012) TriVax-HPV: an improved peptide-based therapeutic vaccination strategy against human papillomavirus-induced cancers. Cancer Immunol Immunother 61:1307–1317. https://doi.org/10.1007/s00262-012-1259-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sultan H, Fesenkova VI, Addis D, Fan AE, Kumai T, Wu J, Salazar AM, Celis E (2017) Designing therapeutic cancer vaccines by mimicking viral infections. Cancer Immunol Immunother 66:203–213. https://doi.org/10.1007/s00262-016-1834-5

    Article  CAS  PubMed  Google Scholar 

  19. Kumai T, Yamaki H, Kono M, Hayashi R, Wakisaka R, Komatsuda H (2022) Antitumor peptide-based vaccine in the limelight. Vaccines (Basel). https://doi.org/10.3390/vaccines10010070

    Article  PubMed  Google Scholar 

  20. Tagliamonte M, Petrizzo A, Napolitano M et al (2015) Novel metronomic chemotherapy and cancer vaccine combinatorial strategy for hepatocellular carcinoma in a mouse model. Cancer Immunol Immunother 64:1305–1314. https://doi.org/10.1007/s00262-015-1698-0

    Article  CAS  PubMed  Google Scholar 

  21. Catimel G, Vermorken JB, Clavel M et al (1994) A phase II study of Gemcitabine (LY 188011) in patients with advanced squamous cell carcinoma of the head and neck. EORTC early clinical trials group. Ann Oncol 5:543–547. https://doi.org/10.1093/oxfordjournals.annonc.a058910

    Article  CAS  PubMed  Google Scholar 

  22. Samlowski WE, Gundacker H, Kuebler JP, Giguere JK, Mills GM, Schuller DE, Ensley JF (2001) Evaluation of gemcitabine in patients with recurrent or metastatic squamous cell carcinoma of the head and neck: a southwest oncology group phase II study. Invest New Drugs 19:311–315. https://doi.org/10.1023/a:1010657609609

    Article  CAS  PubMed  Google Scholar 

  23. Hong S, Zhang Y, Yu G et al (2021) Gemcitabine plus cisplatin versus fluorouracil plus cisplatin as first-line therapy for recurrent or metastatic nasopharyngeal carcinoma: Final overall survival analysis of GEM20110714 phase III study. J Clin Oncol 39:3273–3282. https://doi.org/10.1200/JCO.21.00396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang Y, Chen L, Hu GQ et al (2019) Gemcitabine and cisplatin induction chemotherapy in nasopharyngeal carcinoma. N Engl J Med 381:1124–1135. https://doi.org/10.1056/NEJMoa1905287

    Article  CAS  PubMed  Google Scholar 

  25. Plate JM, Plate AE, Shott S, Bograd S, Harris JE (2005) Effect of gemcitabine on immune cells in subjects with adenocarcinoma of the pancreas. Cancer Immunol Immunother 54:915–925. https://doi.org/10.1007/s00262-004-0638-1

    Article  CAS  PubMed  Google Scholar 

  26. Yang TS, Lin YC, Chen JS, Wang HM, Wang CH (2000) Phase II study of gemcitabine in patients with advanced hepatocellular carcinoma. Cancer 89:750–756. https://doi.org/10.1002/1097-0142(20000815)89:4%3c750::aid-cncr5%3e3.0.co;2-r

    Article  CAS  PubMed  Google Scholar 

  27. Hayashi R, Nagato T, Kumai T et al (2020) Expression of placenta-specific 1 and its potential for eliciting anti-tumor helper T-cell responses in head and neck squamous cell carcinoma. Oncoimmunology 10:1856545. https://doi.org/10.1080/2162402X.2020.1856545

    Article  PubMed  PubMed Central  Google Scholar 

  28. Komatsuda H, Wakisaka R, Kono M et al (2022) Mitogen-activated protein kinase inhibition augments the T cell response against HOXB7-expressing tumor through human leukocyte antigen upregulation. Cancer Sci. https://doi.org/10.1111/cas.15619

    Article  PubMed  PubMed Central  Google Scholar 

  29. Uhlen M, Fagerberg L, Hallstrom BM et al (2015) Proteomics. Tissue-based map of the human proteome. Science 347:1260419. https://doi.org/10.1126/science.1260419

    Article  CAS  PubMed  Google Scholar 

  30. Schuler MM, Nastke MD, Stevanovikc S (2007) SYFPEITHI: database for searching and T-cell epitope prediction. Methods Mol Biol 409:75–93. https://doi.org/10.1007/978-1-60327-118-9_5

    Article  CAS  PubMed  Google Scholar 

  31. Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, Wheeler DK, Sette A, Peters B (2019) The immune epitope database (IEDB): 2018 update. Nucl Acids Res 47:D339–D343. https://doi.org/10.1093/nar/gky1006

    Article  CAS  PubMed  Google Scholar 

  32. Kobayashi H, Wood M, Song Y, Appella E, Celis E (2000) Defining promiscuous MHC class II helper T-cell epitopes for the HER2/neu tumor antigen. Cancer Res 60:5228–5236

    CAS  PubMed  Google Scholar 

  33. Kumai T, Ohkuri T, Nagato T et al (2015) Targeting HER-3 to elicit antitumor helper T cells against head and neck squamous cell carcinoma. Sci Rep 5:16280. https://doi.org/10.1038/srep16280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vertuani S, Triulzi C, Roos AK, Charo J, Norell H, Lemonnier F, Pisa P, Seliger B, Kiessling R (2009) HER-2/neu mediated down-regulation of MHC class I antigen processing prevents CTL-mediated tumor recognition upon DNA vaccination in HLA-A2 transgenic mice. Cancer Immunol Immunother 58:653–664. https://doi.org/10.1007/s00262-008-0587-1

    Article  CAS  PubMed  Google Scholar 

  35. Bauer C, Bauernfeind F, Sterzik A, Orban M, Schnurr M, Lehr HA, Endres S, Eigler A, Dauer M (2007) Dendritic cell-based vaccination combined with gemcitabine increases survival in a murine pancreatic carcinoma model. Gut 56:1275–1282. https://doi.org/10.1136/gut.2006.108621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Haro A, Yano T, Kohno M, Yoshida T, Koga T, Okamoto T, Takenoyama M, Maehara Y (2013) Expression of Brachyury gene is a significant prognostic factor for primary lung carcinoma. Ann Surg Oncol 20(Suppl 3):S509–S516. https://doi.org/10.1245/s10434-013-2914-9

    Article  PubMed  Google Scholar 

  37. Sarkar D, Shields B, Davies ML, Muller J, Wakeman JA (2012) BRACHYURY confers cancer stem cell characteristics on colorectal cancer cells. Int J Cancer 130:328–337. https://doi.org/10.1002/ijc.26029

    Article  CAS  PubMed  Google Scholar 

  38. Huang B, Cohen JR, Fernando RI, Hamilton DH, Litzinger MT, Hodge JW, Palena C (2013) The embryonic transcription factor Brachyury blocks cell cycle progression and mediates tumor resistance to conventional antitumor therapies. Cell Death Dis 4:e682. https://doi.org/10.1038/cddis.2013.208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kono M, Komatsuda H, Yamaki H et al (2022) Immunomodulation via FGFR inhibition augments FGFR1 targeting T-cell based antitumor immunotherapy for head and neck squamous cell carcinoma. Oncoimmunology 11:2021619. https://doi.org/10.1080/2162402X.2021.2021619

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hu Y, Mintz A, Shah SR, Quinones-Hinojosa A, Hsu W (2014) The FGFR/MEK/ERK/brachyury pathway is critical for chordoma cell growth and survival. Carcinogenesis 35:1491–1499. https://doi.org/10.1093/carcin/bgu014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Melssen M, Slingluff CL Jr (2017) Vaccines targeting helper T cells for cancer immunotherapy. Curr Opin Immunol 47:85–92. https://doi.org/10.1016/j.coi.2017.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Spitzer MH, Carmi Y, Reticker-Flynn NE et al (2017) Systemic immunity is required for effective cancer immunotherapy. Cell 168:487–502. https://doi.org/10.1016/j.cell.2016.12.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Alspach E, Lussier DM, Miceli AP et al (2019) MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature 574:696–701. https://doi.org/10.1038/s41586-019-1671-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rabu C, Rangan L, Florenceau L et al (2019) Cancer vaccines: designing artificial synthetic long peptides to improve presentation of class I and class II T cell epitopes by dendritic cells. Oncoimmunology 8:e1560919. https://doi.org/10.1080/2162402X.2018.1560919

    Article  PubMed  PubMed Central  Google Scholar 

  45. Du B, Wen X, Wang Y, Lin M, Lai J (2020) Gemcitabine and checkpoint blockade exhibit synergistic anti-tumor effects in a model of murine lung carcinoma. Int Immunopharmacol 86:106694. https://doi.org/10.1016/j.intimp.2020.106694

    Article  CAS  PubMed  Google Scholar 

  46. Sahai V, Griffith KA, Beg MS, Shaib WL, Mahalingam D, Zhen DB, Deming DA, Zalupski MM (2022) A randomized phase 2 trial of nivolumab, gemcitabine, and cisplatin or nivolumab and ipilimumab in previously untreated advanced biliary cancer: BilT-01. Cancer 128:3523–3530. https://doi.org/10.1002/cncr.34394

    Article  CAS  PubMed  Google Scholar 

  47. Jung HA, Park KU, Cho S et al (2022) A phase II study of nivolumab plus gemcitabine in patients with recurrent or metastatic nasopharyngeal carcinoma (KCSG HN17-11). Clin Cancer Res 28:4240–4247. https://doi.org/10.1158/1078-0432.CCR-22-1238

    Article  CAS  PubMed  Google Scholar 

  48. Soeda A, Morita-Hoshi Y, Makiyama H et al (2009) Regular dose of gemcitabine induces an increase in CD14+ monocytes and CD11c+ dendritic cells in patients with advanced pancreatic cancer. Jpn J Clin Oncol 39:797–806. https://doi.org/10.1093/jjco/hyp112

    Article  PubMed  Google Scholar 

  49. Zhang Y, Bush X, Yan B, Chen JA (2019) Gemcitabine nanoparticles promote antitumor immunity against melanoma. Biomaterials 189:48–59. https://doi.org/10.1016/j.biomaterials.2018.10.022

    Article  CAS  PubMed  Google Scholar 

  50. Salewski I, Henne J, Engster L et al (2021) Combined gemcitabine and immune-checkpoint inhibition conquers anti-PD-L1 resistance in low-immunogenic mismatch repair-deficient tumors. Int J Mol Sci. https://doi.org/10.3390/ijms22115990

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors also thank Dr. Hajime Kamada (Hokuto Social Medical Corporation) for his excellent suggestions for the manuscript.

Funding

This work was supported by JSPS KAKENHI Grant Number 20K09724 and 21H03082.

Author information

Authors and Affiliations

Authors

Contributions

Acquisition, analysis, and interpretation of data: HY, MK, TK, RH, RS, HKom, HK, RW, and KO. Statistical analysis of data: KK, MT, and AKa. Material support: TN, TO, AKo, and HKob. Development of methodology: TK and TH. Conception, design and supervision of the study: TK. Writing of the paper: HY and TK. Review of the paper: TK and Aka.

Corresponding author

Correspondence to Takumi Kumai.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Ethical approval

All experiments were approved by the institutional ethics committee on the Asahikawa Medical University (#16217). The study was conducted ethically in accordance with the World Medical Association Declaration of Helsinki.

Consent to participate and consent for publication

The patients have given their written informed consent to participate and publish their case. The experimental protocol was approved by the Institutional Animal Care and Use Committee of Asahikawa Medical University (#20001).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 740 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaki, H., Kono, M., Wakisaka, R. et al. Brachyury-targeted immunotherapy combined with gemcitabine against head and neck cancer. Cancer Immunol Immunother 72, 2799–2812 (2023). https://doi.org/10.1007/s00262-023-03460-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-023-03460-0

Keywords

Navigation