Skip to main content

Advertisement

Log in

Efficacy and safety of Wilms’ tumor 1 helper peptide OCV-501 in elderly patients with acute myeloid leukemia: a multicenter, randomized, double-blind, placebo-controlled phase 2 trial

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Purpose

Complete remission (CR) of acute myeloid leukemia (AML) in elderly patients has a short duration, and there is no suitable post-remission therapy. We explored the role of the Wilms’ tumor 1 helper peptide OCV-501 to prevent recurrence after remission.

Methods

This placebo-controlled phase 2 study was designed to evaluate accurately the efficacy and immunogenicity of OCV-501 in elderly AML patients. Elderly AML patients who achieved first CR were randomly allocated to receive either OCV-501 (N = 69) or placebo (N = 65) once a week for eight weeks and then every two weeks until week 104. The primary endpoint was disease-free survival (DFS).

Results

Nineteen (27.5%) patients in the OCV-501 group and 23 (35.4%) patients in the placebo group completed the study without relapse. The median DFS in the OCV-501 and placebo groups was 12.1 and 8.4 months, respectively (p = 0.7671, hazard ratio [95% confidence interval]: 0.933 [0.590, 1.477]). The major drug adverse reactions were injection-site reactions. Although treatment with OCV-501 did not prolong DFS for elderly AML patients, post hoc analysis found that immune responders to OCV-501 whose specific IgG was > 10,000 ng/mL (N = 16) and whose WT1-specific interferon-γ response was > 10 pg/mL (N = 26) had significantly longer overall survival compared with placebo.

Conclusions

The placebo-controlled design of this study and quantitative immunological monitoring provides new insight into the relationship between peptide-induced immune responses and survival, suggesting future perspectives for cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

The deidentified participant data, data dictionaries, study protocol, and statistical analysis plan will be shared on a request basis, upon provision of a methodologically sound meta-analysis proposal. There is no end date to the availability of the data. Please contact Masao Hirota directly to request data sharing.

References

  1. Ferrara F (2014) Conventional chemotherapy or hypomethylating agents for older patients with acute myeloid leukaemia? Hematol Oncol 32(1):1–9. https://doi.org/10.1002/hon.2046

    Article  CAS  PubMed  Google Scholar 

  2. Przespolewski A, Szeles A, Wang ES (2018) Advances in immunotherapy for acute myeloid leukemia. Future Oncol 14(10):963–978. https://doi.org/10.2217/fon-2017-0459

    Article  CAS  PubMed  Google Scholar 

  3. Beyar-Katz O, Gill S (2018) Novel approaches to acute myeloid leukemia immunotherapy. Clin Cancer Res 24(22):5502–5515. https://doi.org/10.1158/1078-0432.CCR-17-3016

    Article  CAS  PubMed  Google Scholar 

  4. Call KM et al (1990) Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 60:509–520. https://doi.org/10.1016/0092-8674(90)90601-a

    Article  CAS  PubMed  Google Scholar 

  5. Gessler M, Poustka A, Cavenee W, Neve RL, Orkin SH, Bruns GA (1990) Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Nature 343(6260):774–778. https://doi.org/10.1038/343774a0

    Article  CAS  PubMed  Google Scholar 

  6. Miyoshi Y et al (2002) High expression of Wilms’ tumor suppressor gene predicts poor prognosis in breast cancer patients. Clin Cancer Res 8(5):1167–1171

    CAS  PubMed  Google Scholar 

  7. Oka Y et al (2004) Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc Natl Acad Sci USA 101(38):13885–13890. https://doi.org/10.1073/pnas.0405884101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ochsenreither S et al (2011) “Wilms Tumor Protein 1” (WT1) peptide vaccination-induced complete remission in a patient with acute myeloid leukemia is accompanied by the emergence of a predominant T-cell clone both in blood and bone marrow. J Immunother 34:85–91. https://doi.org/10.1097/CJI.0b013e3181f3cc5c

    Article  CAS  PubMed  Google Scholar 

  9. Di Stasi A, Jimenez AM, Minagawa K, Al-Obaidi M, Rezvani K (2015) Review of the results of WT1 peptide vaccination strategies for myelodysplastic syndromes and acute myeloid leukemia from nine different studies. Front Immunol 6:36. https://doi.org/10.3389/fimmu.2015.00036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Busse A et al (2010) Mutation or loss of Wilms’ tumor gene 1 (WT1) are not major reasons for immune escape in patients with AML receiving WT1 peptide vaccination. J Transl Med 8:5. https://doi.org/10.1186/1479-5876-8-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rezvani K et al (2011) Repeated PR1 and WT1 peptide vaccination in montanide-adjuvant fails to induce sustained high-avidity, epitope-specific CD8+ T cells in myeloid malignancies. Haematologica 96:432–440. https://doi.org/10.3324/haematol.2010.031674

    Article  CAS  PubMed  Google Scholar 

  12. Marzo AL et al (2000) Tumor-specific CD4+ T cells have a major “post-licensing” role in CTL mediated anti-tumor immunity. J Immunol 165(11):6047–6055. https://doi.org/10.4049/jimmunol.165.11.6047

    Article  CAS  PubMed  Google Scholar 

  13. Janssen EM, Lemmens EE, Wolfe T, Christen U, von Herrath MG, Schoenberger SP (2003) CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421(6925):852–856. https://doi.org/10.1038/nature01441

    Article  CAS  PubMed  Google Scholar 

  14. Galaine J, Borg C, Godet Y, Adotévi O (2015) Interest of tumor-specific CD4 T helper 1 cells for therapeutic anticancer vaccine. Vaccines (Basel) 3(3):490–502. https://doi.org/10.3390/vaccines3030490

    Article  CAS  Google Scholar 

  15. Perez SA et al (2010) A new era in anticancer peptide vaccines. Cancer 116(9):2071–2080. https://doi.org/10.1002/cncr.24988

    Article  CAS  PubMed  Google Scholar 

  16. Kobayashi Y, Sakura T, Miyawaki S, Toga K, Sogo S, Heike Y (2017) A new peptide vaccine OCV-501: in vitro pharmacology and phase 1 study in patients with acute myeloid leukemia. Cancer Immunol Immunother 66(7):851–863. https://doi.org/10.1007/s00262-017-1981-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vardiman JW et al (2008) Introduction and overview of the classification of the myeloid neoplasms. In: Swerdlow SH, Campo E, Harris NL et al (eds) WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon, IARC, pp 18–30

    Google Scholar 

  18. Baer MR et al (2008) Low-dose interleukin-2 immunotherapy does not improve outcome of patients age 60 years and older with acute myeloid leukemia in first complete remission: cancer and Leukemia Group B Study 9720. J Clin Oncol 26(30):4934–4939. https://doi.org/10.1200/JCO.2008.17.0472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hellstrand K, Romero A, Brune M (2008) Immunotherapy with histamine dihydrochloride and interleukin 2 in acute myeloid leukaemia. Euro Haematol 2(1):71–74. https://doi.org/10.17925/EOH.2008.02.1.71

    Article  Google Scholar 

  20. Farag SS et al (2002) Postremission therapy with low-dose interleukin 2 with or without intermediate pulse dose interleukin 2 therapy is well tolerated in elderly patients with acute myeloid leukemia: cancer and leukemia group B study 9420. Clin Cancer Res 8(9):2812–2819

    CAS  PubMed  Google Scholar 

  21. Pautas C et al (2010) Randomized study of intensified anthracycline doses for induction and recombinant interleukin-2 for maintenance in patients with acute myeloid leukemia age 50 to 70 years: results of the ALFA-9801 study. J Clin Oncol 28(5):808–814. https://doi.org/10.1200/JCO.2009.23.2652

    Article  CAS  PubMed  Google Scholar 

  22. Kurosawa S (2011). Comparison of post-remission strategies in elderly patients with acute myeloid leukemia in first complete remission. Rinsho Ketsueki, 52(8): 645–52. [Article in Japanese] https://doi.org/10.4081/hr.2020.8380

  23. Cheson BD, Bennett JM, Kopecky KJ et al (2003) Revised recommendations of the international working group for diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid leukemia. J Clin Oncol 21(24):4642–4649

    Article  PubMed  Google Scholar 

  24. Hosen N et al (2016) Wilms tumor 1 peptide vaccination after hematopoietic stem cell transplant in leukemia patients. Stem Cell Investig 3:90. https://doi.org/10.21037/sci.2016.11.08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rezvani K, Yong AS, Mielke S, Jafarpour B, Savani BN, Le RQ et al (2011) Repeated PR1 and WT1 peptide vaccination in Montanide-adjuvant fails to induce sustained high-avidity, epitope-specific CD8+ T cells in myeloid malignancies. Haematologica 96(3):432–440. https://doi.org/10.3324/haematol.2010.031674

    Article  CAS  PubMed  Google Scholar 

  26. Kuball J et al (2011) Pitfalls of vaccinations with WT1-, proteinase3- and MUC1-derived peptides in combination with montanide ISA51 and CpG7909. Cancer Immunol Immunother 60(2):161–171. https://doi.org/10.1007/s00262-010-0929-7

    Article  CAS  PubMed  Google Scholar 

  27. Maslak PG et al (2018) Phase 2 trial of a multivalent WT1 peptide vaccine (galinpepimut-S) in acute myeloid leukemia. Blood Adv 2(3):224–234. https://doi.org/10.1182/bloodadvances.2017014175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao J, Chen Y, Ding ZY, Liu JY (2019) Safety and efficacy of therapeutic cancer vaccines alone or in combination with immune checkpoint inhibitors in cancer treatment. Front Pharmacol 10:1184. https://doi.org/10.3389/fphar.2019.01184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mougel A, Terme M, Tanchot C (2019) Therapeutic cancer vaccine and combinations with antiangiogenic therapies and immune checkpoint blockade. Front Immunol 10:467. https://doi.org/10.3389/fimmu.2019.00467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mailänder V, Scheibenbogen C, Thiel E, Letsch A, Blau IW, Keilholz U (2004) Complete remission in a patient with recurrent acute myeloid leukemia induced by vaccination with WT1 peptide in the absence of hematological or renal toxicity. Leukemia 18(1):165–166. https://doi.org/10.1038/sj.leu.2403186

    Article  PubMed  Google Scholar 

  31. Keilholz U, Letsch A, Busse A, Asemissen AM, Bauer S, Blau IW, Hofmann WK et al (2009) A clinical and immunologic phase 2 trial of Wilms tumor gene product 1 (WT1) peptide vaccination in patients with AML and MDS. Blood 113(26):6541–6548. https://doi.org/10.1159/000481353

    Article  CAS  PubMed  Google Scholar 

  32. Oji Y et al (2016) Association of WT1 IgG antibody against WT1 peptide with prolonged survival in glioblastoma multiforme patients vaccinated with WT1 peptide. Int J Cancer 139(6):1391–1401. https://doi.org/10.1002/ijc.30182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tsuboi A et al (2019) A phase I clinical study of a cocktail vaccine of Wilms’ tumor 1 (WT1) HLA class I and II peptides for recurrent malignant glioma. Cancer Immunol Immunother 68(2):331–340. https://doi.org/10.1007/s00262-018-2274-1

    Article  CAS  PubMed  Google Scholar 

  34. Pulluri B, Kumar A, Shaheen M, Jeter J, Sundararajan S (2017) Tumor microenvironment changes leading to resistance of immune checkpoint inhibitors in metastatic melanoma and strategies to overcome resistance. Pharmacol Res 123:95–102. https://doi.org/10.1016/j.phrs.2017.07.006

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Y, Xu J, Zhang N, Chen M, Wang H, Zhu D (2019) Targeting the tumour immune microenvironment for cancer therapy in human gastrointestinal malignancies. Cancer Lett 458:123–135. https://doi.org/10.1016/j.canlet.2019.05.017

    Article  CAS  PubMed  Google Scholar 

  36. Petitprez F, Meylan M, de Reyniès A, Sautès-Fridman C, Fridman WH (2020) The tumor microenvironment in the response to immune checkpoint blockade therapies. Front Immunol 11:784. https://doi.org/10.3389/fimmu.2020.00784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Epperly R, Gottschalk S, Velasquez MP (2020) A bump in the road: how the hostile AML microenvironment affects CAR T Cell therapy. Front Oncol 10:262. https://doi.org/10.3389/fonc.2020.00262

    Article  PubMed  PubMed Central  Google Scholar 

  38. Li Y et al (2020) Targeting the tumor microenvironment to overcome immune checkpoint blockade therapy resistance. Immunol Lett 220:88–96. https://doi.org/10.1016/j.imlet.2019.03.006

    Article  CAS  PubMed  Google Scholar 

  39. Lamble AJ, Lind EF (2018) Targeting the immune microenvironment in acute myeloid leukemia: a focus on T cell immunity. Front Oncol 8:213. https://doi.org/10.3389/fonc.2018.00213

    Article  PubMed  PubMed Central  Google Scholar 

  40. de Lima M (2018) CC-486 Maintenance after stem cell transplantation in patients with acute myeloid leukemia or myelodysplastic syndromes. Biol Blood Marrow Transplant 24(10):2017–2024. https://doi.org/10.1016/j.bbmt.2018.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Roboz GJ et al (2016) Design of the randomized, phase III, QUAZAR AML maintenance trial of CC-486 (oral azacitidine) maintenance therapy in acute myeloid leukemia. Future Oncol 12(3):293–302. https://doi.org/10.2217/fon.15.326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Battipaglia G (2019) Efficacy and feasibility of sorafenib as a maintenance agent after allogeneic hematopoietic stem cell transplantation for fms-like tyrosine kinase 3 mutated acute myeloid leukemia: an update. Clin Lymphoma Myeloma Leuk 19(8):506–508. https://doi.org/10.1016/j.clml.2019.04.004

    Article  PubMed  Google Scholar 

  43. Chappell G (2019) Maintenance sorafenib in FLT3-ITD AML following allogeneic HCT favorably impacts relapse and overall survival. Bone Marrow Transpl 54(9):1518–1520. https://doi.org/10.1038/s41409-019-0493-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to the memory of Dr. Yuji Heike who made a great contribution to this study. Dr. Heike passed away in 2019. We would like to express our gratitude to Dr. Haruo Sugiyama for his valuable and constructive suggestions during the preparation of the manuscript. We thank all participating patients and their families and the study investigators. We thank Mr Yoshiyuki Shibasaki (Otsuka Pharmaceutical Co. Ltd., Tokyo, Japan) for his helpful advice in the analysis of the results shown in fig. 5. We thank Mr. Keiji Kakumoto and Mr. Yusuke Kakumoto (Otsuka Pharmaceutical Co. Ltd., Tokyo, Japan) for their statistical support in the ad hoc analyses. The authors also thank Alfredo Shimabuku, PhD, of Otsuka Pharmaceutical Co., who reviewed the drafts and final manuscript. We thank Dr. Tetsuji Asao (SunFlare Co., Ltd., Tokyo, Japan) for medical writing services, which were funded by Otsuka Pharmaceutical Co., Ltd.

Funding

This study was funded by Otsuka Pharmaceutical Co., Ltd.

Author information

Authors and Affiliations

Authors

Contributions

SM, NS, and TN contributed to the study design. SM and NS wrote the study protocol. TK, MY, NT, SM, KM, NS, and TN were responsible for clinical trial management. TK, MY, NT, SM, KM, YI, NS, and TN contributed to the interpretation of the results and writing of the draft of the manuscript. All authors, except YI and MH, contributed to data collection. All authors provided clinically important advice on feasible inclusion and exclusion criteria. All authors reviewed the draft and approved the final version of the manuscript for publication.

Corresponding author

Correspondence to Toru Kiguchi.

Ethics declarations

Conflicts of interest

Toru Kiguchi reports grants and personal fees from Bristol-Myers Squibb Co., Ltd., Otsuka Pharmaceutical Co., Ltd., Kyowa Hakko Kirin Co., Ltd., MSD Co., Ltd., Astellas Pharmaceutical Co., Ltd., Nippon Shinyaku Co., Ltd., Novartis Pharmaceutical Co., Ltd., Sumitomo Dainippon Pharmaceutical Co., Ltd., Janssen Pharmaceutical Co., Ltd., Celgene Co., Ltd., SymBio Pharmaceutical Co., Ltd.; personal fees from Asahi Kasei Pharma Co., Ltd., Chugai Pharmaceutical Co., Ltd., Pfizer Co., Ltd., Eisai Co., Ltd., Mochida Pharmaceutical Co., Ltd., Takeda Pharmaceutical Co., Ltd., Ono Pharmaceutical Co., Ltd., grants from Daiichi Sankyo Pharmaceutical Co., Ltd., Taiho Pharmaceutical Co., Ltd., Teijin Co., Ltd., Sanofi K.K., Ltd., Celltrion, Inc., outside the submitted work. Shuichi Miyawaki reports personal fees from Otsuka Pharmaceutical Co. Ltd. during the conduct of the study; personal fees from Astellas Pharmaceutical Co., Ltd., Nippon Shinyaku Co., Ltd. outside the submitted work. Tomoki Naoe reports grants and personal fees from Pfizer Co. Ltd., Astellas Pharmaceutical Co., Ltd, Fujifilm, Otsuka Pharmaceutical Co., Ltd.; grants from Sumitomo Dainippon Pharmaceutical Co., Ltd. outside the submitted work. Koichi Masui, Yuichiro Ihara, Masao Hirota, and Naoko Shimofurutani are employees of Otsuka Pharmaceutical Co., Ltd., Japan. Masaki Yamaguchi, and Naoki Takezako report nothing to disclosure.

Ethics approval

The study was conducted following the ethical principles originating in or derived from the Declaration of Helsinki, Good Clinical Practice guidelines, and the laws of applicable authorities. The study was designed and conducted by the sponsor (Otsuka Pharmaceutical Co., Ltd., Tokyo, Japan) in collaboration with the principal investigators. The sponsor monitored study conduct, collected the data, and performed the statistical analyses. All authors reviewed the data and confirmed the integrity of the analyses.

Consent to participate

The study protocol and informed consent form were approved by the institutional review board at each participating study site. All patients gave written informed consent before initiation of any study-specific procedures.

Consent for publication

Not applicable as no patient-specific data were included in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Affiliation at which research involved in this trial was conducted.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 672 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiguchi, T., Yamaguchi, M., Takezako, N. et al. Efficacy and safety of Wilms’ tumor 1 helper peptide OCV-501 in elderly patients with acute myeloid leukemia: a multicenter, randomized, double-blind, placebo-controlled phase 2 trial. Cancer Immunol Immunother 71, 1419–1430 (2022). https://doi.org/10.1007/s00262-021-03074-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-021-03074-4

Keywords

Navigation