Skip to main content

Advertisement

Log in

Identification of LIPH as an unfavorable biomarkers correlated with immune suppression or evasion in pancreatic cancer based on RNA-seq

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

It is widely considered that pancreatic cancer (PC) is an immunosuppressive cancer. Immune-based therapies remain promising therapeutic strategies for PC. Overexpression of lipase H (LIPH) was reported to be related to immunity in cattle and has also been demonstrated to promote tumor progression in several tumors, but its role in pancreatic carcinogenesis remains unclear. Study on LIPH in PC might provide a new insight into the immunosuppression in PC.

Methods

The potential biological and clinical significance of LIPH was evaluated by bioinformatics analysis. We further investigated potential associations between the expression of LIPH and tumor immune infiltration using the CIBERSORT algorithm, the ESTIMAT algorithm, and single sample gene set enrichment analysis (ssGSEA).

Results

LIPH was significantly overexpressed in tumor tissues compared with normal tissues. LIPH overexpression correlated with tumor recurrence, advanced histologic grade, and poorer overall survival (OS). Four of the most common somatic mutation, including KRAS, TP53, CDKN2A, and SMAD4, in PC were all correlated with high LIPH expression. And high LIPH expression was significantly correlated with KRAS activation and SMAD4 inactivation. Besides, LIPH expression was involved in various biological pathways such as negative regulation of cell–cell adhesion, actin cytoskeleton, EMT, angiogenesis, and signaling by MST1. And LIPH overexpression caused high infiltration of TAMs, Treg cells, and Th2/Th1, but reduced the infiltration of CD8+ T cells and Th1 cells.

Conclusions

Our findings demonstrated that LIPH correlated with immune suppression or evasion and may function as a novel unfavorable prognostic biomarker in PC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary.

References

  1. Kamisawa T, Wood LD, Itoi T, Takaori K (2016) Pancreatic cancer. Lancet 388:73–85. https://doi.org/10.1016/S0140-6736(16)00141-0

    Article  CAS  PubMed  Google Scholar 

  2. Lai E, Puzzoni M, Ziranu P et al (2019) New therapeutic targets in pancreatic cancer. Cancer Treat Rev 81:101926. https://doi.org/10.1016/j.ctrv.2019.101926

    Article  CAS  PubMed  Google Scholar 

  3. Parkin A, Man J, Chou A, Nagrial AM, Samra J, Gill AJ, Timpson P, Pajic M (2018) The evolving understanding of the molecular and therapeutic landscape of pancreatic ductal adenocarcinoma. Diseases. https://doi.org/10.3390/diseases6040103

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bazhin AV, Shevchenko I, Umansky V, Werner J, Karakhanova S (2014) Two immune faces of pancreatic adenocarcinoma: possible implication for immunotherapy. Cancer Immunol Immunother CII 63:59–65. https://doi.org/10.1007/s00262-013-1485-8

    Article  CAS  PubMed  Google Scholar 

  5. Elaileh A, Saharia A, Potter L, Baio F, Ghafel A, Abdelrahim M, Heyne K (2019) Promising new treatments for pancreatic cancer in the era of targeted and immune therapies. Am J Cancer Res 9:1871–1888

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Cervello M, Emma MR, Augello G et al (2020) New landscapes and horizons in hepatocellular carcinoma therapy. Aging. https://doi.org/10.18632/aging.102777

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schouwenburg MG, Suijkerbuijk KPM, Koornstra RHT et al (2019) Switching to immune checkpoint inhibitors upon response to targeted therapy; the road to long-term survival in advanced melanoma patients with highly elevated serum LDH? Cancers. https://doi.org/10.3390/cancers11121940

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ridolfi L, De Rosa F, Petracci E et al (2020) Anti-PD1 antibodies in patients aged >/= 75 years with metastatic melanoma: a retrospective multicentre study. J Geriatr Oncol. https://doi.org/10.1016/j.jgo.2019.12.012

    Article  PubMed  Google Scholar 

  9. Fu Y, Liu S, Zeng S, Shen H (2019) From bench to bed: the tumor immune microenvironment and current immunotherapeutic strategies for hepatocellular carcinoma. J Exp Clin Cancer Res: CR 38:396. https://doi.org/10.1186/s13046-019-1396-4

    Article  PubMed  PubMed Central  Google Scholar 

  10. Balachandran VP, Beatty GL, Dougan SK (2019) Broadening the impact of immunotherapy to pancreatic cancer: challenges and opportunities. Gastroenterology 156:2056–2072. https://doi.org/10.1053/j.gastro.2018.12.038

    Article  CAS  PubMed  Google Scholar 

  11. Li J, Yuan S, Norgard RJ, Yan F, Yamazoe T, Blanco A, Stanger BZ (2019) Tumor cell-intrinsic USP22 suppresses antitumor immunity in pancreatic cancer. Cancer Immunol Res. https://doi.org/10.1158/2326-6066.CIR-19-0661

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hou YC, Chao YJ, Hsieh MH, Tung HL, Wang HC, Shan YS (2019) Low CD8(+) T cell infiltration and high PD-L1 expression are associated with level of CD44(+)/CD133(+) cancer stem cells and predict an unfavorable prognosis in pancreatic cancer. Cancers. https://doi.org/10.3390/cancers11040541

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhuang H, Zhang C, Hou B (2020) FAM83H overexpression predicts worse prognosis and correlates with less CD8(+) T cells infiltration and Ras-PI3K-Akt-mTOR signaling pathway in pancreatic cancer. Clin Transl Oncol 22:2244–2252. https://doi.org/10.1007/s12094-020-02365-z

    Article  CAS  PubMed  Google Scholar 

  14. Li Y, Zhou X, Zhang Q, Chen E, Sun Y, Ye D, Wang O, Zhang X, Lyu J (2019) Lipase member H is a downstream molecular target of hypoxia inducible factor-1alpha and promotes papillary thyroid carcinoma cell migration in BCPAP and KTC-1 cell lines. Cancer Manag Res 11:931–941. https://doi.org/10.2147/CMAR.S183355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Inoue A, Arima N, Ishiguro J, Prestwich GD, Arai H, Aoki J (2011) LPA-producing enzyme PA-PLA(1)alpha regulates hair follicle development by modulating EGFR signalling. EMBO J 30:4248–4260. https://doi.org/10.1038/emboj.2011.296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lin ME, Herr DR, Chun J (2010) Lysophosphatidic acid (LPA) receptors: signaling properties and disease relevance. Prostaglandins Other Lipid Mediat 91:130–138. https://doi.org/10.1016/j.prostaglandins.2009.02.002

    Article  CAS  PubMed  Google Scholar 

  17. Mizukami Y, Hayashi R, Tsuruta D, Shimomura Y, Sugawara K (2018) Novel splice site mutation in the LIPH gene in a patient with autosomal recessive woolly hair/hypotrichosis: case report and published work review. J Dermatol 45:613–617. https://doi.org/10.1111/1346-8138.14257

    Article  CAS  PubMed  Google Scholar 

  18. Ahmad F, Sharif S, FurqanUbaid M, Shah K, Khan MN, Umair M, Azeem Z, Ahmad W (2018) Novel sequence variants in the LIPH and LPAR6 genes underlies autosomal recessive woolly hair/hypotrichosis in consanguineous families. Congenit Anom 58:24–28. https://doi.org/10.1111/cga.12226

    Article  CAS  Google Scholar 

  19. Orozco-terWengel P, Barbato M, Nicolazzi E et al (2015) Revisiting demographic processes in cattle with genome-wide population genetic analysis. Front Genet 6:191. https://doi.org/10.3389/fgene.2015.00191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cui M, Jin H, Shi X, Qu G, Liu L, Ding X, Wang Y, Niu C (2014) Lipase member H is a novel secreted protein associated with a poor prognosis for breast cancer patients. Tumour Biol 35:11461–11465. https://doi.org/10.1007/s13277-014-2436-5

    Article  CAS  PubMed  Google Scholar 

  21. Seki Y, Yoshida Y, Ishimine H et al (2014) Lipase member H is a novel secreted protein selectively upregulated in human lung adenocarcinomas and bronchioloalveolar carcinomas. Biochem Biophys Res Commun 443:1141–1147. https://doi.org/10.1016/j.bbrc.2013.12.106

    Article  CAS  PubMed  Google Scholar 

  22. Ishimine H, Zhou R, Sumitomo K, Ito Y, Seki Y, Yoshida Y, Kurisaki A (2016) Lipase member H frequently overexpressed in human esophageal adenocarcinomas. Tumour Biol 37:2075–2081. https://doi.org/10.1007/s13277-015-3985-y

    Article  CAS  PubMed  Google Scholar 

  23. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M, Alizadeh AA (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12:453–457. https://doi.org/10.1038/nmeth.3337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yoshihara K, Shahmoradgoli M, Martinez E et al (2013) Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun 4:2612. https://doi.org/10.1038/ncomms3612

    Article  CAS  PubMed  Google Scholar 

  25. Zhuang H, Zhou Z, Zhang Z, Chen X, Ma Z, Huang S, Gong Y, Zhang C, Hou B (2020) B3GNT3 overexpression promotes tumor progression and inhibits infiltration of CD8(+) T cells in pancreatic cancer. Aging 13:2310–2329. https://doi.org/10.18632/aging.202255

    Article  PubMed  PubMed Central  Google Scholar 

  26. Camp RL, Dolled-Filhart M, Rimm DL (2004) X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res 10:7252–7259. https://doi.org/10.1158/1078-0432.CCR-04-0713

    Article  CAS  PubMed  Google Scholar 

  27. Singh RR, Goldberg J, Varghese AM, Yu KH, Park W, O’Reilly EM (2019) Genomic profiling in pancreatic ductal adenocarcinoma and a pathway towards therapy individualization: a scoping review. Cancer Treat Rev 75:27–38. https://doi.org/10.1016/j.ctrv.2019.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kamburov A, Stelzl U, Lehrach H, Herwig R (2013) The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res 41:D793-800. https://doi.org/10.1093/nar/gks1055

    Article  CAS  PubMed  Google Scholar 

  29. Hanzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform 14:7. https://doi.org/10.1186/1471-2105-14-7

    Article  Google Scholar 

  30. Bindea G, Mlecnik B, Tosolini M et al (2013) Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39:782–795. https://doi.org/10.1016/j.immuni.2013.10.003

    Article  CAS  PubMed  Google Scholar 

  31. Kong K, Guo M, Liu Y, Zheng J (2020) Progress in animal models of pancreatic ductal adenocarcinoma. J Cancer 11:1555–1567. https://doi.org/10.7150/jca.37529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shi J, Xue J (2019) Inflammation and development of pancreatic ductal adenocarcinoma. Chin Clin Oncol 8:19. https://doi.org/10.21037/cco.2019.04.02

    Article  PubMed  Google Scholar 

  33. Li M, Li M, Yang Y et al (2020) Remodeling tumor immune microenvironment via targeted blockade of PI3K-gamma and CSF-1/CSF-1R pathways in tumor associated macrophages for pancreatic cancer therapy. J Controlled Release. https://doi.org/10.1016/j.jconrel.2020.02.011

    Article  Google Scholar 

  34. Cui R, Yue W, Lattime EC, Stein MN, Xu Q, Tan XL (2016) Targeting tumor-associated macrophages to combat pancreatic cancer. Oncotarget 7:50735–50754. https://doi.org/10.18632/oncotarget.9383

    Article  PubMed  PubMed Central  Google Scholar 

  35. Paluskievicz CM, Cao X, Abdi R, Zheng P, Liu Y, Bromberg JS (2019) T Regulatory cells and priming the suppressive tumor microenvironment. Front Immunol 10:2453. https://doi.org/10.3389/fimmu.2019.02453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ohue Y, Nishikawa H (2019) Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Sci 110:2080–2089. https://doi.org/10.1111/cas.14069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sideras K, Braat H, Kwekkeboom J, van Eijck CH, Peppelenbosch MP, Sleijfer S, Bruno M (2014) Role of the immune system in pancreatic cancer progression and immune modulating treatment strategies. Cancer Treat Rev 40:513–522. https://doi.org/10.1016/j.ctrv.2013.11.005

    Article  CAS  PubMed  Google Scholar 

  38. Najafi S, Mirshafiey A (2019) The role of T helper 17 and regulatory T cells in tumor microenvironment. Immunopharmacol Immunotoxicol 41:16–24. https://doi.org/10.1080/08923973.2019.1566925

    Article  CAS  PubMed  Google Scholar 

  39. Fukunaga A, Miyamoto M, Cho Y et al (2004) CD8+ tumor-infiltrating lymphocytes together with CD4+ tumor-infiltrating lymphocytes and dendritic cells improve the prognosis of patients with pancreatic adenocarcinoma. Pancreas 28:e26-31. https://doi.org/10.1097/00006676-200401000-00023

    Article  PubMed  Google Scholar 

  40. Jiang H, Hegde S, Knolhoff BL et al (2016) Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat Med 22:851–860. https://doi.org/10.1038/nm.4123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bayne LJ, Beatty GL, Jhala N, Clark CE, Rhim AD, Stanger BZ, Vonderheide RH (2012) Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21:822–835. https://doi.org/10.1016/j.ccr.2012.04.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. El-Jawhari JJ, El-Sherbiny YM, Scott GB et al (2014) Blocking oncogenic RAS enhances tumour cell surface MHC class I expression but does not alter susceptibility to cytotoxic lymphocytes. Mol Immunol 58:160–168. https://doi.org/10.1016/j.molimm.2013.11.020

    Article  CAS  PubMed  Google Scholar 

  43. Bellone G, Turletti A, Artusio E, Mareschi K, Carbone A, Tibaudi D, Robecchi A, Emanuelli G, Rodeck U (1999) Tumor-associated transforming growth factor-beta and interleukin-10 contribute to a systemic Th2 immune phenotype in pancreatic carcinoma patients. Am J Pathol 155:537–547. https://doi.org/10.1016/s0002-9440(10)65149-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen Y, Di C, Zhang X et al (2020) Transforming growth factor beta signaling pathway: a promising therapeutic target for cancer. J Cell Physiol 235:1903–1914. https://doi.org/10.1002/jcp.29108

    Article  CAS  PubMed  Google Scholar 

  45. Fang P, Li X, Dai J et al (2018) Immune cell subset differentiation and tissue inflammation. J Hematol Oncol 11:97. https://doi.org/10.1186/s13045-018-0637-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ahmed S, Bradshaw AD, Gera S, Dewan MZ, Xu R (2017) The TGF-beta/Smad4 signaling pathway in pancreatic carcinogenesis and its clinical significance. J Clin Med. https://doi.org/10.3390/jcm6010005

    Article  PubMed  PubMed Central  Google Scholar 

  47. Leung L, Radulovich N, Zhu CQ, Wang D, To C, Ibrahimov E, Tsao MS (2013) Loss of canonical Smad4 signaling promotes KRAS driven malignant transformation of human pancreatic duct epithelial cells and metastasis. PLoS ONE 8:e84366. https://doi.org/10.1371/journal.pone.0084366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cheng H, Fan K, Luo G et al (2019) Kras(G12D) mutation contributes to regulatory T cell conversion through activation of the MEK/ERK pathway in pancreatic cancer. Cancer Lett 446:103–111. https://doi.org/10.1016/j.canlet.2019.01.013

    Article  CAS  PubMed  Google Scholar 

  49. Cullis J, Das S, Bar-Sagi D (2018) Kras and tumor immunity: friend or foe? Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a031849

    Article  PubMed  PubMed Central  Google Scholar 

  50. Neuzillet C, Tijeras-Raballand A, Cohen R, Cros J, Faivre S, Raymond E, de Gramont A (2015) Targeting the TGFbeta pathway for cancer therapy. Pharmacol Ther 147:22–31. https://doi.org/10.1016/j.pharmthera.2014.11.001

    Article  CAS  PubMed  Google Scholar 

  51. Protti MP, De Monte L (2012) Cross-talk within the tumor microenvironment mediates Th2-type inflammation in pancreatic cancer. Oncoimmunology 1:89–91. https://doi.org/10.4161/onci.1.1.17939

    Article  PubMed  PubMed Central  Google Scholar 

  52. Brunetto E, De Monte L, Balzano G et al (2019) The IL-1/IL-1 receptor axis and tumor cell released inflammasome adaptor ASC are key regulators of TSLP secretion by cancer associated fibroblasts in pancreatic cancer. J Immunother Cancer 7:45. https://doi.org/10.1186/s40425-019-0521-4

    Article  PubMed  PubMed Central  Google Scholar 

  53. Whiteside TL (2018) FOXP3+ Treg as a therapeutic target for promoting anti-tumor immunity. Expert Opin Ther Targets 22:353–363. https://doi.org/10.1080/14728222.2018.1451514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Whiteside TL (2014) Regulatory T cell subsets in human cancer: are they regulating for or against tumor progression? Cancer Immunol Immunother CII 63:67–72. https://doi.org/10.1007/s00262-013-1490-y

    Article  CAS  PubMed  Google Scholar 

  55. Jiang Y, Zhan H (2020) Communication between EMT and PD-L1 signaling: New insights into tumor immune evasion. Cancer Lett 468:72–81. https://doi.org/10.1016/j.canlet.2019.10.013

    Article  CAS  PubMed  Google Scholar 

  56. Hugo W, Zaretsky JM, Sun L et al (2017) Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 168:542. https://doi.org/10.1016/j.cell.2017.01.010

    Article  CAS  PubMed  Google Scholar 

  57. Soundararajan R, Fradette JJ, Konen JM et al (2019) Targeting the interplay between epithelial-to-mesenchymal-transition and the immune system for effective immunotherapy. Cancers. https://doi.org/10.3390/cancers11050714

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by High-level Hospital Construction Project (DFJH201921), Fundamental Research Funds for the Central Universities (y2syD2192230), and National Natural Science Foundation of China (Nos. 81672475, 81702783, 82072635 and 82072637).

Author information

Authors and Affiliations

Authors

Contributions

HZ, BC, CZ, and BH conceived and designed the study. HZ, XC, and YW performed the data analysis. HZ, XC, BC, and SH wrote the paper. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Bo Chen, Chuanzhao Zhang or Baohua Hou.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical standards

All datasets are freely available as public resources. Therefore, local ethics approval was not needed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Hongkai Zhuang, Xinming Chen and Ying Wang co-first authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Figure S1

KM survival analysis for OS of PC patients in TCGA dataset according to the median of LIPH expression. KM, Kaplan-Meier; PC, pancreatic cancer; OS, overall survival; HR, hazard ratio (TIF 3189 kb)

Figure S2

The mutation landscape of PC in TCGA dataset. PC, pancreatic cancer (TIF 6564 kb)

Figure S3

Validation of the association among LIPH, KRAS, and SMAD4 using cBioportal database. (A) LIPH expression was positively correlated to KRAS expression (Cor=0.51, P<0.05). (B) LIPH expression was negatively correlated to SMAD4 expression (Cor=-0.43, P<0.05) (TIF 1823 kb)

Figure S4

Association between LIPH expression and TMB. TMB, the total mutational burden (TIF 299 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, H., Chen, X., Wang, Y. et al. Identification of LIPH as an unfavorable biomarkers correlated with immune suppression or evasion in pancreatic cancer based on RNA-seq. Cancer Immunol Immunother 71, 601–612 (2022). https://doi.org/10.1007/s00262-021-03019-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-021-03019-x

Keywords

Navigation