Skip to main content

Advertisement

Log in

Tumor-draining lymph nodes are survival niches that support T cell priming against lymphatic transported tumor antigen and effects of immune checkpoint blockade in TNBC

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Triple negative breast cancer (TNBC) is a significant clinical problem to which immunotherapeutic strategies have been applied with limited success. Using the syngeneic E0771 TNBC mouse model, this work explores the potential for antitumor CD8+ T cell immunity to be primed extratumorally in lymphoid tissues and therapeutically leveraged. CD8+ T cell viability and responses within the tumor microenvironment (TME) were found to be severely impaired, effects coincident with local immunosuppression that is recapitulated in lymphoid tissues in late stage disease. Prior to onset of a locally suppressed immune microenvironment, however, CD8+ T cell priming within lymph nodes (LN) that depended on tumor lymphatic drainage remained intact. These results demonstrate tumor-draining LNs (TdLN) to be lymphoid tissue niches that support the survival and antigenic priming of CD8+ T lymphocytes against lymph-draining antigen. The therapeutic effects of and CD8+ T cells response to immune checkpoint blockade were furthermore improved when directed to LNs within the tumor-draining lymphatic basin. Therefore, TdLNs represent a unique potential tumor immunity reservoir in TNBC for which strategies may be developed to improve the effects of ICB immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Code availability

Not applicable.

References

  1. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69:7–34. https://doi.org/10.3322/caac.21551

    Article  PubMed  Google Scholar 

  2. Ferlay J, Soerjomataram I, Dikshit R et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386. https://doi.org/10.1002/ijc.29210

    Article  CAS  PubMed  Google Scholar 

  3. Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363:1938–1948

    Article  CAS  PubMed  Google Scholar 

  4. Seidel JA, Otsuka A, Kabashima K (2018) Anti-PD-1 and anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations. Front Oncol 8:86. https://doi.org/10.3389/fonc.2018.00086

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brahmer JR, Tykodi SS, Chow LQM et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465. https://doi.org/10.1056/NEJMoa1200694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schmid P, Adams S, Rugo HS et al (2018) Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med 379:2108–2121. https://doi.org/10.1056/NEJMoa1809615

    Article  CAS  PubMed  Google Scholar 

  7. Wang T, Wang C, Wu J et al (2017) The different T-cell receptor repertoires in breast cancer tumors, draining lymph nodes, and adjacent tissues. Cancer Immunol Res 5:148–157. https://doi.org/10.1158/2326-6066.CIR-16-0107

    Article  CAS  PubMed  Google Scholar 

  8. Crosby EJ, Wei J, Yang XY et al (2017) Complimentary mechanisms of dual checkpoint blockade expand unique T-cell repertoires and activate adaptive anti-tumor immunity in triple-negative breast tumors. Oncoimmunology 7:e1421891. https://doi.org/10.1080/2162402x.2017.1421891

    Article  CAS  Google Scholar 

  9. Shiota T, Miyasato Y, Ohnishi K et al (2016) The clinical significance of CD169-positive lymph node macrophage in patients with breast cancer. PLoS ONE 11:1–13. https://doi.org/10.1371/journal.pone.0166680

    Article  CAS  Google Scholar 

  10. O’Melia MJ, Lund AW, Thomas SN (2019) The biophysics of lymphatic transport: engineering tools and immunological consequences. Science 22:28–43. https://doi.org/10.1016/j.isci.2019.11.005

    Article  Google Scholar 

  11. Murphy K, Weaver C (2017) Janeway’s Immunobiology, 9th edn. Taylor & Francis, New York

    Google Scholar 

  12. Wiig H, Swartz MA (2012) Interstitial fluid and lymph formation and transport: physiological regulation and roles in inflammation and cancer. Physiol Rev 92:1005–1060. https://doi.org/10.1152/physrev.00037.2011

    Article  CAS  PubMed  Google Scholar 

  13. Huxley VH, Scallan J (2011) Lymphatic fluid: exchange mechanisms and regulation. J Physiol 589:2935–2943. https://doi.org/10.1113/jphysiol.2011.208298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zawieja DC (2009) Contractile physiology of lymphatics. Lymphat Res Biol 7:87–96. https://doi.org/10.1089/lrb.2009.0007

    Article  PubMed  PubMed Central  Google Scholar 

  15. Reddy ST, Van Der Vlies AJ, Simeoni E et al (2007) Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol 25:1159–1164. https://doi.org/10.1038/nbt1332

    Article  CAS  PubMed  Google Scholar 

  16. Rohner NA, Thomas SN (2016) Melanoma growth effects on molecular clearance from tumors and biodistribution into systemic tissues versus draining lymph nodes. J Control Release 223:99–108. https://doi.org/10.1016/j.jconrel.2015.12.027

    Article  CAS  PubMed  Google Scholar 

  17. Rohner NA, Thomas SN (2017) Flexible macromolecule versus rigid particle retention in the injected skin and accumulation in draining lymph nodes are differentially influenced by hydrodynamic size. ACS Biomater Sci Eng 3:153–159. https://doi.org/10.1021/acsbiomaterials.6b00438

    Article  CAS  PubMed  Google Scholar 

  18. Allan RS, Waithman J, Bedoui S et al (2006) Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity 25:153–162. https://doi.org/10.1016/j.immuni.2006.04.017

    Article  CAS  PubMed  Google Scholar 

  19. Thomas SN, Rutkowski JM, Pasquier M et al (2012) Impaired humoral immunity and tolerance in K14-VEGFR-3-Ig mice that lack dermal lymphatic drainage. J Immunol 189:2181–2190. https://doi.org/10.4049/jimmunol.1103545

    Article  CAS  PubMed  Google Scholar 

  20. Loo CP, Nelson NA, Lane RS et al (2017) Lymphatic vessels balance viral dissemination and immune activation following cutaneous viral infection. Cell Rep 20:3176–3187. https://doi.org/10.1016/j.celrep.2017.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Platt AM, Kutkowski JM, Martel C et al (2013) Normal dendritic cell mobilization to lymph nodes under conditions of severe lymphatic hypoplasia. J Immunol 190:4608–4620. https://doi.org/10.4049/jimmunol.1202600.Normal

    Article  CAS  PubMed  Google Scholar 

  22. Nakamura R, Sakakibara M, Nagashima T et al (2009) Accumulation of regulatory T cells in sentinel lymph nodes is a prognostic predictor in patients with node-negative breast cancer. Eur J Cancer 45:2123–2131. https://doi.org/10.1016/j.ejca.2009.03.024

    Article  CAS  PubMed  Google Scholar 

  23. Liyanage UK, Moore TT, Joo H-G et al (2002) Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169:2756–2761. https://doi.org/10.4049/jimmunol.169.5.2756

    Article  CAS  PubMed  Google Scholar 

  24. Danilin S, Merkel AR, Johnson JR et al (2012) Myeloid-derived suppressor cells expand during breast cancer progression and promote tumor-induced bone destruction. Oncoimmunology 1:1484–1494

    Article  PubMed  PubMed Central  Google Scholar 

  25. van Pul KM, Vuylsteke RJCLM, van de Ven R et al (2020) Selectively hampered activation of lymph node-resident dendritic cells precedes profound T cell suppression and metastatic spread in the breast cancer sentinel lymph node. J Immunother Cancer 7:133. https://doi.org/10.1186/s40425-019-0605-1

    Article  Google Scholar 

  26. Foulds GA, Vadakekolathu J, Abdel-Fatah TMA et al (2018) Immune-phenotyping and transcriptomic profiling of peripheral blood mononuclear cells from patients with breast cancer: identification of a 3 gene signature which predicts relapse of triple negative breast cancer. Front Immunol 9:2028. https://doi.org/10.3389/fimmu.2018.02028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Satthaporn S, Robins A, Vassanasiri W et al (2004) Dendritic cells are dysfunctional in patients with operable breast cancer. Cancer Immunol Immunother 53:510–518. https://doi.org/10.1007/s00262-003-0485-5

    Article  PubMed  Google Scholar 

  28. Gil Del Alcazar CR, Huh SJ, Ekram MB et al (2017) Immune escape in breast cancer during in situ to invasive carcinoma transition. Cancer Discov 7:1098–1115. https://doi.org/10.1158/2159-8290.CD-17-0222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mahmoud SMA, Paish EC, Powe DG et al (2011) Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol 29:1949–1955. https://doi.org/10.1200/JCO.2010.30.5037

    Article  PubMed  Google Scholar 

  30. Savas P, Virassamy B, Ye C et al (2018) Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat Med 24:986–993. https://doi.org/10.1038/s41591-018-0078-7

    Article  CAS  PubMed  Google Scholar 

  31. Guo L, Cao C, Goswami S et al (2020) Tumoral PD-1hiCD8+ T cells are partially exhausted and predict favorable outcome in triple-negative breast cancer. Clin Sci 134:711–726. https://doi.org/10.1042/CS20191261

    Article  CAS  Google Scholar 

  32. Chang AY, Bhattacharya N, Mu J et al (2013) Spatial organization of dendritic cells within tumor draining lymph nodes impacts clinical outcome in breast cancer patients. J Transl Med 11:1–12

    Article  Google Scholar 

  33. Duvall CL, Taylor WR, Weiss D, Guldberg RE (2004) Quantitative microcomputed tomography analysis of collateral vessel development after ischemic injury. Am J Physiol Hear Circ Physiol 287:H302–H310. https://doi.org/10.1152/ajpheart.00928.2003

    Article  CAS  Google Scholar 

  34. Li X, Li M, Lian Z et al (2016) Prognostic role of programmed death ligand-1 expression in breast cancer: a systematic review and meta-analysis. Target Oncol 11:753–761. https://doi.org/10.1007/s11523-016-0451-8

    Article  PubMed  Google Scholar 

  35. Kim IS, Gao Y, Welte T et al (2019) Immuno-subtyping of breast cancer reveals distinct myeloid cell profiles and immunotherapy resistance mechanisms. Nat Cell Biol 21:1113–1126. https://doi.org/10.1038/s41556-019-0373-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Green DR, Droin N, Pinkoski M (2003) Activation-induced cell death in T cells. Immunol Rev 193:70–81. https://doi.org/10.1034/j.1600-065X.2003.00051.x

    Article  CAS  PubMed  Google Scholar 

  37. Kabelitz D, Pohl T, Pechhold K (1993) Activation-induced cell death (apoptosis) of mature peripheral T lymphocytes. Trends Immunol 14:338–339

    Article  CAS  Google Scholar 

  38. Ucker DS, Hebshi LD, Blomquist JE, Torbett BE (1994) Physiological T-cell death: susceptibility is modulated by activation, aging, and transformation, but the mechanism is constant. Immunol Rev 142:273–299. https://doi.org/10.1111/j.1600-065X.1994.tb00893.x

    Article  CAS  PubMed  Google Scholar 

  39. Hanahan D, Weinberg RA (2000) The Hallmarks of Cancer. Cell 100:57–70. https://doi.org/10.1007/s00262-010-0968-0

    Article  CAS  PubMed  Google Scholar 

  40. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  41. Shibuya M (2011) Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2:1097–1105. https://doi.org/10.1177/1947601911423031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Carmeliet P (2005) VEGF as a key mediator of angiogenesis in cancer. Oncology 69:4–10. https://doi.org/10.1159/000088478

    Article  CAS  PubMed  Google Scholar 

  43. Nagy JA, Dvorak AM, Dvorak HF (2012) Vascular hyperpermeability, angiogenesis, and stroma generation. Cold Spring Harb Perspect Med 2:1–14. https://doi.org/10.1101/cshperspect.a006544

    Article  CAS  Google Scholar 

  44. Nagy JA, Feng D, Vasile E et al (2006) Permeability properties of tumor surrogate blood vessels induced by VEGF-A. Lab Investig 86:767–780. https://doi.org/10.1038/labinvest.3700436

    Article  CAS  PubMed  Google Scholar 

  45. Schneider BP, Gray RJ, Radovich M et al (2013) Prognostic and predictive value of tumor vascular endothelial growth factor gene amplification in metastatic breast cancer treated with paclitaxel with and without bevacizumab; results from ECOG 2100 trial. Clin Cancer Res 19:1281–1289. https://doi.org/10.1158/1078-0432.CCR-12-3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Su J-C, Mar A-C, Wu S-H et al (2016) Disrupting VEGF-A paracrine and autocrine loops by targeting SHP-1 suppresses triple negative breast cancer metastasis. Sci Rep 6:28888. https://doi.org/10.1038/srep28888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bahnassy A, Mohanad M, Ismail MF et al (2015) Molecular biomarkers for prediction of response to treatment and survival in triple negative breast cancer patients from Egypt. Exp Mol Pathol 99:303–311. https://doi.org/10.1016/j.yexmp.2015.07.014

    Article  CAS  PubMed  Google Scholar 

  48. Sweat RS, Sloas DC, Murfee WL (2014) VEGF-C induces lymphangiogenesis and angiogenesis in the rat mesentery culture model. Microcirculation 21:532–540. https://doi.org/10.1111/micc.12132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vaahtomeri K, Karaman S, Mäkinen T, Alitalo K (2017) Lymphangiogenesis guidance by paracrine and pericellular factors. Genes Dev 31:1615–1634. https://doi.org/10.1101/gad.303776.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lund AW, Wagner M, Fankhauser M et al (2016) Lymphatic vessels regulate immune microenvironments in human and murine melanoma. J Clin Investig 126:3389–3402. https://doi.org/10.1172/JCI79434

    Article  PubMed  PubMed Central  Google Scholar 

  51. Stacker SA, Williams SP, Karnezis T et al (2014) Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat Rev Cancer 14:159–172. https://doi.org/10.1038/nrc3677

    Article  CAS  PubMed  Google Scholar 

  52. Kitano M, Yamazaki C, Takumi A et al (2016) Imaging of the cross-presenting dendritic cell subsets in the skin-draining lymph node. Proc Natl Acad Sci 113:1044–1049. https://doi.org/10.1073/pnas.1513607113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pucci F, Garris C, Lai CP et al (2016) SCS macrophages suppress melanoma by restricting tumor-derived vesicle-B cell interactions. Science (80-) 352:242–246. https://doi.org/10.1126/science.aaf1328

    Article  CAS  Google Scholar 

  54. Hood JL, San Roman S, Wickline SA (2011) Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res 71:3792–3801. https://doi.org/10.1158/0008-5472.CAN-10-4455

    Article  CAS  PubMed  Google Scholar 

  55. Broggi MAS, Maillat L, Clement CC et al (2019) Tumor-associated factors are enriched in lymphatic exudate compared to plasma in metastatic melanoma patients. J Exp Med 216:1091–1107. https://doi.org/10.1084/jem.20181618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Spranger S, Spaapen RM, Zha Y et al (2013) Up-regulation of PD-L1, IDO, and tregs in the melanoma tumor microenvironment is driven by CD8+ T Cells. Sci Transl Med. https://doi.org/10.1126/scitranslmed.3006504

    Article  PubMed  PubMed Central  Google Scholar 

  57. Platt AM, Randolph GJ (2013) Dendritic cell migration through the lymphatic vasculature to lymph nodes, 1st edn. Elsevier Inc., Amsterdam

    Google Scholar 

  58. Schineis P, Runge P, Halin C (2019) Cellular traffic through afferent lymphatic vessels. Vasc Pharmacol 112:31–41. https://doi.org/10.1016/j.vph.2018.08.001

    Article  CAS  Google Scholar 

  59. Harrell MI, Iritani BM, Ruddell A (2008) Lymph node mapping in the mouse. J Immunol Methods 332:170–174. https://doi.org/10.1016/j.jim.2007.11.012

    Article  CAS  PubMed  Google Scholar 

  60. Im SJ, Hashimoto M, Gerner MY et al (2016) Defining CD8+T cells that provide the proliferative burst after PD-1 therapy. Nature 537:417–421. https://doi.org/10.1038/nature19330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Miller BC, Sen DR, Al Abosy R et al (2019) Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat Immunol 20:326–336. https://doi.org/10.1038/s41590-019-0312-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gupta PK, Godec J, Wolski D et al (2015) CD39 expression identifies terminally exhausted CD8+ T cells. PLoS Pathog 11:1–21. https://doi.org/10.1371/journal.ppat.1005177

    Article  CAS  Google Scholar 

  63. Francis DM, Manspeaker MP, Schudel A et al (2020) Blockade of immune checkpoints in lymph nodes through locoregional delivery augments cancer immunotherapy. Sci Transl Med 12:eaay3575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jansen CS, Prokhnevska N, Master VA et al (2019) An intra-tumoral niche maintains and differentiates stem-like CD8 T cells. Nature 576:465–470. https://doi.org/10.1038/s41586-019-1836-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cabrita R, Lauss M, Sanna A et al (2020) Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 577:561–565. https://doi.org/10.1038/s41586-019-1914-8

    Article  CAS  PubMed  Google Scholar 

  66. Petitprez F, de Reyniès A, Keung EZ et al (2020) B cells are associated with survival and immunotherapy response in sarcoma. Nature 577:556–560. https://doi.org/10.1038/s41586-019-1906-8

    Article  CAS  PubMed  Google Scholar 

  67. Horton BL, Williams JB, Cabanov A et al (2018) Intratumoral CD8+ T-cell apoptosis is a major component of T-cell dysfunction and impedes antitumor immunity. Cancer Immunol Res 6:14–24. https://doi.org/10.1158/2326-6066.CIR-17-0249

    Article  CAS  PubMed  Google Scholar 

  68. Cursiefen C, Chen L, Borges LP et al (2004) VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Investig 113:1040–1050. https://doi.org/10.1172/JCI200420465.1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hirakawa S, Kodama S, Kunstfeld R et al (2005) VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 201:1089–1099. https://doi.org/10.1084/jem.20041896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Halin C, Tobler NE, Vigl B et al (2007) VEGF-A produced by chronically inflamed tissue induces lymphangiogenesis in draining lymph nodes. Blood 110:3158–3167. https://doi.org/10.1182/blood-2007-01-066811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rahma OE, Hodi FS (2019) The intersection between tumor angiogenesis and immune suppression. Clin Cancer Res 25:5449–5457. https://doi.org/10.1158/1078-0432.CCR-18-1543

    Article  CAS  PubMed  Google Scholar 

  72. Naik AM, Fey J, Gemignani M et al (2004) The risk of axillary relapse after sentinel lymph node biopsy for breast cancer is comparable with that of axillary lymph node dissection. Ann Surg 240:462–471. https://doi.org/10.1097/01.sla.0000137130.23530.19

    Article  PubMed  PubMed Central  Google Scholar 

  73. Pesce C, Morrow M (2013) The need for lymph node dissection in nonmetastatic breast cancer. Annu Rev Med 64:119–129. https://doi.org/10.1146/annurev-med-052511-135500

    Article  CAS  PubMed  Google Scholar 

  74. Giuliano AE, Hunt KK, Ballman KV et al (2011) Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasis. J Am Med Assoc 305:569–575. https://doi.org/10.1001/jama.2011.90

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Paul Archer for technical assistance.

Funding

This work was supported by a Komen Foundation Career Catalyst Grant CCR15330478, US National Institutes of Health Grants R01CA207619 (SNT), U01CA214354 (SNT), T32GM008433 (MJO), S10OD016264, and Georgia CORE/It’s the Journey. MPM was a National Science Foundation Graduate Research Fellow.

Author information

Authors and Affiliations

Authors

Contributions

MJO and SNT designed all experiments and wrote manuscript. MJO carried out all experiments and analyzed all data. MPM assisted in carrying out therapeutic experiments. All authors reviewed and approved the manuscript for submission.

Corresponding author

Correspondence to Susan N. Thomas.

Ethics declarations

Conflict of interest

Not applicable.

Ethics approval

All animal work was approved by the Georgia Institute of Technology Institutional Animal Care and Use Committee.

Consent to participate

Not applicable.

Consent for publication

All authors have reviewed the manuscript and consent to publication.

Availability of data and material

Data and materials described here will be made available upon request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 694 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Melia, M.J., Manspeaker, M.P. & Thomas, S.N. Tumor-draining lymph nodes are survival niches that support T cell priming against lymphatic transported tumor antigen and effects of immune checkpoint blockade in TNBC. Cancer Immunol Immunother 70, 2179–2195 (2021). https://doi.org/10.1007/s00262-020-02792-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02792-5

Keywords

Navigation