Skip to main content
Log in

Absolute lymphocyte counts at end of induction correlate with distinct immune cell compartments in pediatric B cell precursor acute lymphoblastic leukemia

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Several retrospective studies in children with B cell precursor (BCP) acute lymphoblastic leukemia (ALL) provided clinical evidence that higher absolute lymphocyte counts (ALC) early into treatment significantly correlated with improved relapse-free and overall survival. It still remains unknown, however, whether the predictive role of higher ALCs reflects general bone marrow recovery or a more specific attribute of immune function. To investigate this question, we implemented a prospective observational cohort study in 20 children with BCP ALL on day 29 (D29) of induction chemotherapy and immunophenotyped their lymphoid (T, B and natural killer cells) and myeloid (neutrophils, monocytes, dendritic cells) compartments. In a first evaluation of a cohort treated with Children’s Oncology Group-based induction chemotherapy, the immune cell compartments were differentially depleted at D29. Neither gender, risk status, minimal residual disease, nor bone marrow recovery markers correlated with D29 ALC. In contrast, both CD3+ T cell and dendritic cell compartments, which did not correlate with age, significantly correlated with D29 ALC (p < 0.0001). In addition, subset complexity of cellular immune compartments was preserved at D29. This study reveals that D29 ALC significantly correlates with distinct immune cell compartments but not with bone marrow recovery markers, suggesting that higher D29 ALCs may contribute to leukemia control by inducing specific host immune activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ALC:

Absolute lymphocyte count

ALL:

Acute lymphoblastic leukemia

AMC:

Absolute monocyte count

ANC:

Absolute neutrophil count

BCP:

B cell precursor

CBC:

Complete blood cell count

COG:

Children’s Oncology Group

D0:

Day 0 at diagnosis before chemotherapy

D29:

End of induction chemotherapy day 29

HR:

High-risk

mDCs:

Myeloid dendritic cells

NKs:

Natural killer cells

pDCs:

Plasmacytoid dendritic cells

SR:

Standard-risk

WBC:

White blood cell count

References

  1. Hunger SP, Mullighan CG (2015) Acute lymphoblastic leukemia in children. N Engl J Med 373:1541–1552

    Article  CAS  PubMed  Google Scholar 

  2. Pui C-H, Yang JJ, Hunger SP et al (2015) Childhood acute lymphoblastic leukemia: progress through collaboration. J Clin Oncol 33:2938–2948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Borowitz MJ, Devidas M, Hunger SP et al (2008) Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children’s Oncology Group study. Blood 111:5477–5485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schrappe M (2014) Detection and management of minimal residual disease in acute lymphoblastic leukemia. Hematology 2014:244–249

    Article  PubMed  Google Scholar 

  5. De Angulo G, Yuen C, Palla SL et al (2008) Absolute lymphocyte count is a novel prognostic indicator in ALL and AML: implications for risk stratification and future studies. Cancer 112:407–415

    Article  PubMed  Google Scholar 

  6. Rabin KR, Gramatges MM, Borowitz MJ et al (2012) Absolute lymphocyte counts refine minimal residual disease-based risk stratification in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 59:468–474

    Article  PubMed  Google Scholar 

  7. Rubnitz JE, Campbell P, Zhou Y et al (2013) Prognostic impact of absolute lymphocyte counts at the end of remission induction in childhood acute lymphoblastic leukemia. Cancer 119:2061–2066

    Article  PubMed  Google Scholar 

  8. Hatzipantelis E, Pana ZD, Vlachou M et al (2014) Peripheral blood lymphocyte recovery and overall survival in pediatric acute lymphoblastic leukemia. Pediatr Blood Cancer 61:181–183

    Article  PubMed  Google Scholar 

  9. Gupta A, Kapoor G, Jain S, Bajpai R (2015) Absolute lymphocyte count recovery independently predicts outcome in childhood acute lymphoblastic leukemia: experience from a tertiary care cancer center of a developing country. J Pediatr Hematol Oncol 37:e143–e149

    Article  PubMed  Google Scholar 

  10. Hirase S, Hasegawa D, Takahashi H et al (2015) Absolute lymphocyte count at the end of induction therapy is a prognostic factor in childhood acute lymphoblastic leukemia. Int J Hematol 102:594–601

    Article  CAS  PubMed  Google Scholar 

  11. Cheng Y, Luo Z, Yang S et al (2015) The ratio of absolute lymphocyte count at interim of therapy to absolute lymphocyte count at diagnosis predicts survival in childhood B-lineage acute lymphoblastic leukemia. Leuk Res 39:144–150

    Article  PubMed  Google Scholar 

  12. Shen HQ, Feng JH, Tang YM et al (2013) Absolute lymphocyte count is associated with minimal residual disease level in childhood B-cell precursor acute lymphoblastic leukemia. Leuk Res 37:671–674

    Article  PubMed  Google Scholar 

  13. Behl D, Porrata LF, Markovic SN et al (2006) Absolute lymphocyte count recovery after induction chemotherapy predicts superior survival in acute myelogenous leukemia. Leukemia 20:29–34

    Article  CAS  PubMed  Google Scholar 

  14. Rabin KR, Gramatges MM, Margolin JF, Zweidler-McKay PA (2014) Reply to “Peripheral blood lymphocyte recovery and overall survival in pediatric acute lymphoblastic leukemia”. Pediatr Blood Cancer 61:180

    Article  PubMed  Google Scholar 

  15. Maecker B, Mougiakakos D, Zimmermann M et al (2006) Dendritic cell deficiencies in pediatric acute lymphoblastic leukemia patients. Leukemia 20:645–649

    Article  CAS  PubMed  Google Scholar 

  16. Laane E, Bjorklund E, Mazur J et al (2007) Dendritic cell regeneration in the bone marrow of children treated for acute lymphoblastic leukaemia. Scand J Immunol 66:572–583

    Article  CAS  PubMed  Google Scholar 

  17. Eyrich M, Wiegering V, Lim A et al (2009) Immune function in children under chemotherapy for standard risk acute lymphoblastic leukaemia—a prospective study of 20 paediatric patients. Br J Haematol 147:360–370

    Article  CAS  PubMed  Google Scholar 

  18. van Tilburg CM, van der Velden VHJ, Sanders EAM et al (2011) Reduced versus intensive chemotherapy for childhood acute lymphoblastic leukemia: impact on lymphocyte compartment composition. Leuk Res 35:484–491

    Article  PubMed  Google Scholar 

  19. Wiegering V, Frank J, Freudenberg S et al (2014) Impaired B-cell reconstitution in children after chemotherapy for standard or medium risk acute precursor B-lymphoblastic leukemia. Leuk Lymphoma 55:870–875

    Article  CAS  PubMed  Google Scholar 

  20. Blimkie D, Fortuno ES, Yan H et al (2011) Variables to be controlled in the assessment of blood innate immune responses to Toll-like receptor stimulation. J Immunol Methods 366:89–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Valle A, Maugeri N, Manfredi AA, Battaglia M (2012) Standardization in flow cytometry: correct sample handling as a priority. Nat Rev Immunol 12:864

    Article  CAS  PubMed  Google Scholar 

  22. Autissier P, Soulas C, Burdo TH, Williams KC (2010) Evaluation of a 12-color flow cytometry panel to study lymphocyte, monocyte, and dendritic cell subsets in humans. Cytometry A 77:410–419

    PubMed  Google Scholar 

  23. Maecker HT, McCoy JP, Nussenblatt R (2012) Standardizing immunophenotyping for the Human Immunology Project. Nat Rev Immunol 12:191–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tosato F, Bucciol G, Pantano G et al (2015) Lymphocytes subsets reference values in childhood. Cytom Part A 87:81–85

    Article  CAS  Google Scholar 

  25. Heinze A, Elze MC, Kloess S et al (2013) Age-matched dendritic cell subpopulations reference values in childhood. Scand J Immunol 77:213–220

    Article  CAS  PubMed  Google Scholar 

  26. Flohr T, Schrauder A, Cazzaniga G et al (2008) Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia 22:771–782

    Article  CAS  PubMed  Google Scholar 

  27. Ravandi F, Jorgensen JL, O’Brien SM et al (2016) Minimal residual disease assessed by multi-parameter flow cytometry is highly prognostic in adult patients with acute lymphoblastic leukaemia. Br J Haematol 172:392–400

    Article  CAS  PubMed  Google Scholar 

  28. Berry DA, Zhou S, Higley H et al (2017) Association of minimal residual disease with clinical outcome in pediatric and adult acute lymphoblastic leukemia: a meta-analysis. JAMA Oncol 3(7):e170580

    Article  PubMed  Google Scholar 

  29. Geissmann F, Manz MG, Jung S et al (2010) Development of monocytes, macrophages, and dendritic cells. Science 327:656–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sun D, Elson P, Liedtke M et al (2012) Absolute lymphocyte count at day 28 independently predicts event-free and overall survival in adults with newly diagnosed acute lymphoblastic leukemia. Am J Hematol 87:957–960

    Article  PubMed  Google Scholar 

  31. Yanada M, Borthakur G, Garcia-Manero G et al (2008) Blood counts at time of complete remission provide additional independent prognostic information in acute myeloid leukemia. Leuk Res 32:1505–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cox MC, Nofroni I, Ruco L et al (2008) Low absolute lymphocyte count is a poor prognostic factor in diffuse-large-B-cell-lymphoma. Leuk Lymphoma 49:1745–1751

    Article  PubMed  Google Scholar 

  33. Moore C, Eslin D, Levy A et al (2010) Prognostic significance of early lymphocyte recovery in pediatric osteosarcoma. Pediatr Blood Cancer 55:1096–1102

    Article  PubMed  Google Scholar 

  34. De Angulo G, Hernandez M, Morales-Arias J et al (2007) Early lymphocyte recovery as a prognostic indicator for high-risk Ewing sarcoma. J Pediatr Hematol Oncol 29:48–52

    Article  PubMed  Google Scholar 

  35. Kim HT, Armand P, Frederick D et al (2015) Absolute lymphocyte count recovery after allogeneic hematopoietic stem cell transplantation predicts clinical outcome. Biol Blood Marrow Transplant 21:873–880

    Article  PubMed  Google Scholar 

  36. Koehl U, Bochennek K, Zimmermann SY et al (2007) Immune recovery in children undergoing allogeneic stem cell transplantation: absolute CD8+ CD3+ count reconstitution is associated with survival. Bone Marrow Transplant 39:269–278

    Article  CAS  PubMed  Google Scholar 

  37. Porrata LF (2016) Autologous Graft-versus-Tumor Effect: reality or Fiction? Adv Hematol 2016:5385972

    Article  PubMed  PubMed Central  Google Scholar 

  38. Noyan F, Lieke T, Taubert R et al (2014) Naive tumour-specific CD4+ T cells were efficiently primed in acute lymphoblastic leukaemia. Scand J Immunol 80:161–168

    Article  CAS  PubMed  Google Scholar 

  39. Derolf AR, Laane E, Bjorklund E et al (2014) Dendritic cells in bone marrow at diagnosis and after chemotherapy in adult patients with acute myeloid leukaemia. Scand J Immunol 80:424–431

    Article  CAS  PubMed  Google Scholar 

  40. Palucka K, Banchereau J (2012) Cancer immunotherapy via dendritic cells. Nat Rev Cancer 12:265–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lustfeld I, Altvater B, Ahlmann M et al (2014) High Proportions of CD4+ T cells among residual bone marrow T cells in childhood acute lymphoblastic leukemia are associated with favorable early responses. Acta Haematol 131:28–36

    Article  CAS  PubMed  Google Scholar 

  42. Low M, Lee D, McLean C et al (2014) Detectable CD8 cells correlate with improved overall survival in adult B lymphoblastic leukaemia patients. Br J Haematol 165:883–885

    Article  CAS  PubMed  Google Scholar 

  43. Elze MC, Ciocarlie O, Heinze A et al (2015) Dendritic cell reconstitution is associated with relapse-free survival and acute GVHD severity in children after allogeneic stem cell transplantation. Bone Marrow Transplant 50:266–273

    Article  CAS  PubMed  Google Scholar 

  44. Fei F, Lim M, George AA et al (2015) Cytotoxicity of CD56-positive lymphocytes against autologous B-cell precursor acute lymphoblastic leukemia cells. Leukemia 29:788–797

    Article  CAS  PubMed  Google Scholar 

  45. Ben Mami N, Mohty M, Chambost H et al (2004) Blood dendritic cells in patients with acute lymphoblastic leukaemia. Br J Haematol 126:77–80

    Article  Google Scholar 

  46. Barrett AJ, Savani BN (2009) Does chemotherapy modify the immune surveillance of hematological malignancies? Leukemia 23:53–58

    Article  CAS  PubMed  Google Scholar 

  47. Baccala R, Gonzalez-Quintial R, Dummer W, Theofilopoulos AN (2005) Tumor immunity via homeostatic T cell proliferation: mechanistic aspects and clinical perspectives. Springer Semin Immunopathol 27:75–85

    Article  PubMed  Google Scholar 

  48. Dummer W, Niethammer AG, Baccala R et al (2002) T cell homeostatic proliferation elicits effective antitumor autoimmunity. J Clin Invest 110:185–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Borrello I, Sotomayor EM, Rattis FM et al (2000) Sustaining the graft-versus-tumor effect through posttransplant immunization with granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing tumor vaccines. Blood 95:3011–3019

    CAS  PubMed  Google Scholar 

  50. Stachel D, Fütterer A, Haas RJ, Schmid I (2004) Enhanced lymphocyte proliferation responses in pediatric patients early after myelosuppressive chemotherapy. Pediatr Blood Cancer 43:644–650

    Article  PubMed  Google Scholar 

  51. Moritz B, Eder J, Meister B, Heitger A (2001) Intact T-cell regenerative capacity in childhood acute lymphoblastic leukemia after remission induction therapy. Med Pediatr Oncol 36:283–289

    Article  CAS  PubMed  Google Scholar 

  52. Luczynski W, Krawczuk-Rybak M, Muszynska-Roslan K et al (2002) Immunosuppression in childhood acute lymphoblastic leukemia after remission induction therapy concerns B not T lymphocytes. Med Pediatr Oncol 39:147–148

    Article  PubMed  Google Scholar 

  53. van Tilburg CM, van Gent R, Bierings MB et al (2011) Immune reconstitution in children following chemotherapy for haematological malignancies: a long-term follow-up. Br J Haematol 152:201–210

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the participants in this research study as well as the nurses and physicians involved. We gratefully acknowledge the staff of the BC Children’s Hospital Biobank for their assistance with sample and clinical data acquisition. We also want to thank Kelly D. Getz, PhD for providing statistical expertise, as well as Arnawaz Bashir, Susanna Sung and Sayeh Abdossamadi for their technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

N. Rolf designed the study and performed the research experiments, analyzed the data and wrote the manuscript; K. Smolen contributed to research design; A. Kariminia, M. Fidanza and A. Seif contributed to research analysis; A. Velenosi was the coordinator of the clinical study details; A. Seif performed statistical analyses; C. Strahlendorf, K. Smolen, A. Kariminia, M. Fidanza and A. Seif critically reviewed the manuscript, G. Reid supervised the study and wrote the manuscript.

Corresponding author

Correspondence to Nina Rolf.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose. The University of British Columbia Research Ethics Board approved the study (H12-01987). Informed consent of human subjects was obtained in all cases in accordance with the Declaration of Helsinki.

Funding

This work was funded in part by a Leukemia and Lymphoma Society of Canada operating Grant (Gregor SD Reid) and a Canadian Institutes of Health Research (CIHR) Fellowship Award (Nina Rolf).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1416 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rolf, N., Smolen, K.K., Kariminia, A. et al. Absolute lymphocyte counts at end of induction correlate with distinct immune cell compartments in pediatric B cell precursor acute lymphoblastic leukemia. Cancer Immunol Immunother 67, 225–236 (2018). https://doi.org/10.1007/s00262-017-2070-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-017-2070-3

Keywords

Navigation