Skip to main content

Advertisement

Log in

Generation of cytotoxic T lymphocytes specific for native or modified peptides derived from the epidermal growth factor receptor pathway substrate 8 antigen

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The ideal tumor antigen for the development of a cancer immunotherapy is one that is expressed only in tumor cells. The epidermal growth factor receptor pathway substrate 8 gene (Eps8) might be an effective antigen for cancer immunotherapy as it is overexpressed in a variety of cancer cells but not in normal tissues. In this study, the potential utility of an Eps8-derived immunotherapy was tested in vitro and in vivo. Three computer-based algorithms were used to design eight Eps8 native epitopes with potentially high binding affinity to the HLA-A2.1 molecule, which is found at a high frequency in the Chinese population. Of these eight, three peptides with a moderate affinity to the HLA-A2.1 molecule were modified at anchor residue positions to achieve stronger immunogenicity. These four modified peptides displayed stronger binding affinity to HLA-A2.1 molecules on T2 cells and a lower dissociation rate. In functional assays with human PBMCs in vitro and in HLA-A2.1/Kb transgenic mice in vivo, CTLs primed by each native and modified peptide secreted IFN-γ and were toxic to cancer cells from a variety of tissue types in an HLA-A2.1-restricted and Eps8-specific manner. p101–109-2L and p276–284-1Y9V were superior to other modified and native epitopes both in vitro and in vivo. These results indicate that employing the native and modified epitopes identified here in Eps8-based immunotherapy for HLA-A2.1 positive cancer patients may result in efficient anticancer immune responses for diverse tumor types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

APC:

Antigen-presenting cells

APL:

Altered peptide ligand

CTL:

Cytotoxic T lymphocyte

DC:

Dendritic cell

DC50 :

Dissociation complex 50

Eps8:

Epidermal growth factor receptor pathway substrate 8 gene

EGFR:

Epidermal growth factor receptor

ELISPOT:

Enzyme-linked immunospot

E/T:

Effector/target

FI:

Fluorescence index

IFN-γ:

Interferon-gamma

IMP:

Influenza matrix protein

LDH:

Lactate dehydrogenase

MFI:

Mean fluorescence intensity

PADRE:

Pan DR epitope peptides

PBMC:

Peripheral blood mononuclear cell

TAA:

Tumor-associated antigen

TAP:

Transporter-associated protein

References

  1. Gilboa E (2004) The promise of cancer vaccines. Nat Rev Cancer 4(5):401–411

    Article  CAS  PubMed  Google Scholar 

  2. Mocellin S, Semenzato G, Mandruzzato S, Riccardo RC (2004) Part II: vaccines for haematological malignant disorders. Lancet Oncol 5(12):727–737

    Article  CAS  PubMed  Google Scholar 

  3. Vigneron N, Stroobant V, Van den Eynde BJ, van der Bruggen P (2013) Database of T cell-defined human tumor antigens: the 2013 update. Cancer Immun 13:15

    PubMed Central  PubMed  Google Scholar 

  4. Anderson LJ, Cook DR, Yamamoto TN, Berger C, Maloney DG, Riddell SR (2011) Identification of MAGE-C1 (CT-7) epitopes for T-cell therapy of multiple myeloma. Cancer Immunol Immunother 60(7):985–997

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Sun Z, Lethe B, Zhang Y, Russo V, Colau D, Stroobant V, Boon T, van der Bruggen P (2006) A new LAGE-1 peptide recognized by cytolytic T lymphocytes on HLA-A68 tumors. Cancer Immunol Immunother 55(6):644–652

    Article  CAS  PubMed  Google Scholar 

  6. Matsuzaki J, Qian F, Luescher I, Lele S, Ritter G, Shrikant PA, Gnjatic S, Old LJ, Odunsi K (2008) Recognition of naturally processed and ovarian cancer reactive CD8 + T cell epitopes within a promiscuous HLA class II T-helper region of NY-ESO-1. Cancer Immunol Immunother 57(8):1185–1195

    Article  CAS  PubMed  Google Scholar 

  7. Keilholz U, Letsch A, Busse A, Asemissen AM, Bauer S, Blau IW, Hofmann WK, Uharek L, Thiel E, Scheibenbogen C (2009) A clinical and immunologic phase 2 trial of Wilms tumor gene product 1 (WT1) peptide vaccination in patients with AML and MDS. Blood 113(26):6541–6548

    Article  CAS  PubMed  Google Scholar 

  8. Emens LA (2012) Re-purposing cancer therapeutics for breast cancer immunotherapy. Cancer Immunol Immunother 61(8):1299–1305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Parmiani G, Russo V, Maccalli C, Parolini D, Rizzo N, Maio M. (2014) Peptide-based vaccines for cancer therapy. Hum Vaccin Immunother, 10(11). Advance online publication. doi:10.4161/hv.29418

  10. Li YH, Xue TY, He YZ, Du JW (2013) Novel oncoprotein EPS8: a new target for anticancer therapy. Future Oncol 9:1587–1594

    Article  CAS  PubMed  Google Scholar 

  11. Fazioli F, Minichiello L, Matoska V, Castagnino P, Miki T, Wong WT, Di Fiore PP (1993) Eps8, a substrate for the epidermal growth factor receptor kinase, enhances EGF-dependent mitogenic signals. EMBO J 12(10):3799–3808

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Scita G, Nordstrom J, Carbone R, Tenca P, Giardina G, Gutkind S, Bjarnegard M, Betsholtz C, Di Fiore PP (1999) EPS8 and E3B1 transduce signals from Ras to Rac. Nature 401(6750):290–293

    Article  CAS  PubMed  Google Scholar 

  13. Scita G, Tenca P, Areces LB, Tocchetti A, Frittoli E, Giardina G, Ponzanelli I, Sini P, Innocenti M, Di Fiore PP (2001) An effector region in Eps8 is responsible for the activation of the Rac-specific GEF activity of Sos-1 and for the proper localization of the Rac-based actin-polymerizing machine. J Cell Biol 154(5):1031–1044

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Disanza A, Carlier MF, Stradal TE, Didry D, Frittoli E, Confalonieri S, Croce A, Wehland J, Di Fiore PP, Scita G (2004) Eps8 controls actin-based motility by capping the barbed ends of actin filaments. Nat Cell Biol 6(12):1180–1188

    Article  CAS  PubMed  Google Scholar 

  15. Shieh DC, Lin DT, Yang BS, Kuan HL, Kao KJ (1996) High frequency of HLA-A*0207 subtype in Chinese population. Transfusion 36(9):818–821

    Article  CAS  PubMed  Google Scholar 

  16. Ruppert J, Sidney J, Celis E, Kubo RT, Grey HM, Sette A (1993) Prominent role of secondary anchor residues in peptide binding to HLA-A2.1 molecules. Cell 74(5):929–937

    Article  CAS  PubMed  Google Scholar 

  17. Tourdot S, Scardino A, Saloustrou E, Gross DA, Pascolo S, Cordopatis P, Lemonnier FA, Kosmatopoulos K (2000) A general strategy to enhance immunogenicity of low-affinity HLA-A2. 1-associated peptides: implication in the identification of cryptic tumor epitopes. Eur J Immunol 30(12):3411–3421

    Article  CAS  PubMed  Google Scholar 

  18. Kreher CR, Dittrich MT, Guerkov R, Boehm BO, Tary-Lehmann M (2003) CD4 + and CD8 + cells in cryopreserved human PBMC maintain full functionality in cytokine ELISPOT assays. J Immunol Methods 278(1–2):79–93

    Article  CAS  PubMed  Google Scholar 

  19. Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50(3–4):213–219

    Article  CAS  PubMed  Google Scholar 

  20. Parker KC, Bednarek MA, Coligan JE (1994) Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152(1):163–175

    CAS  PubMed  Google Scholar 

  21. Nielsen M, Lundegaard C, Worning P, Lauemoller SL, Lamberth K, Buus S, Brunak S, Lund O (2003) Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci 12(5):1007–1017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Greiner J, Li L, Ringhoffer M, Barth TF, Giannopoulos K, Guillaume P, Ritter G, Wiesneth M, Dohner H, Schmitt M (2005) Identification and characterization of epitopes of the receptor for hyaluronic acid-mediated motility (RHAMM/CD168) recognized by CD8 + T cells of HLA-A2-positive patients with acute myeloid leukemia. Blood 106(3):938–945

    Article  CAS  PubMed  Google Scholar 

  23. Passoni L, Scardino A, Bertazzoli C, Gallo B, Coluccia AM, Lemonnier FA, Kosmatopoulos K, Gambacorti-Passerini C (2002) ALK as a novel lymphoma -associated tumor antigen: identification of 2 HLA-A2.1-restricted CD8 + T-cell epitopes. Blood 99(6):2100–2106

    Article  CAS  PubMed  Google Scholar 

  24. Ohminami H, Yasukawa M, Fujita S (2000) HLA class I-restricted lysis of leukemia cells by a CD8(+) cytotoxic T-lymphocyte clone specific for WT1 peptide. Blood 95(1):286–293

    CAS  PubMed  Google Scholar 

  25. Greiner J, Li L, Ringhoffer M, Barth TF, Giannopoulos K, Guillaume P, Ritter G, Wiesneth M, Dohner H, Schmitt M (2005) Identification and characterization of epitopes of the receptor for hyaluronic acid-mediated motility (RHAMM/CD168) recognized by CD8 + T cells of HLA-A2-positive patients with acute myeloid leukemia. Blood 106(3):938–945

    Article  CAS  PubMed  Google Scholar 

  26. Olson BM, Frye TP, Johnson LE, Fong L, Knutson KL, Disis ML, McNeel DG (2010) HLA-A2-restricted T-cell epitopes specific for prostatic acid phosphatase. Cancer Immunol Immunother 59(6):943–953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Alexander J, Sidney J, Southwood S, Ruppert J, Oseroff C, Maewal A, Snoke K, Serra HM, Kubo RT, Sette A et al (1994) Development of high potency universal DR-restricted helper epitopes by modification of high affinity DR-blocking peptides. Immunity 1:751–761

    Article  CAS  PubMed  Google Scholar 

  28. Li F, Yang D, Wang Y, Liu B, Deng Y, Wang L, Shang X, Tong W, Ni B, Wu Y (2009) Identification and modification of an HLA-A*0201-restricted cytotoxic T lymphocyte epitope from Ran antigen. Cancer Immunol Immunother 58:2039–2049

    Article  CAS  PubMed  Google Scholar 

  29. Parkhurst MR, Salgaller ML, Southwood S, Robbins PF, Sette A, Rosenberg SA, Kawakami Y (1996) Improved induction of melanoma-reactive CTL with peptides from the melanoma antigen gp100 modified at HLA-A*0201-binding residues. J Immunol 157(6):2539–2548

    CAS  PubMed  Google Scholar 

  30. Valmori D, Fonteneau JF, Lizana CM, Gervois N, Lienard D, Rimoldi D, Jongeneel V, Jotereau F, Cerottini JC, Romero P (1998) Enhanced generation of specific tumor-reactive CTL in vitro by selected Melan-A/MART-1 immunodominant peptide analogues. J Immunol 160(4):1750–1758

    CAS  PubMed  Google Scholar 

  31. Buhrman JD, Slansky JE (2013) Improving T cell responses to modified peptides in tumor vaccines. Immunol Res 55(1–3):34–47

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Pinilla-Ibarz J, May RJ, Korontsvit T, Gomez M, Kappel B, Zakhaleva V, Zhang RH, Scheinberg DA (2006) Improved human T-cell responses against synthetic HLA-0201 analog peptides derived from the WT1 oncoprotein. Leukemia 20(11):2025–2033

    Article  CAS  PubMed  Google Scholar 

  33. Stuge TB, Holmes SP, Saharan S, Tuettenberg A, Roederer M, Weber JS, Lee PP (2004) Diversity and recognition efficiency of T cell responses to cancer. PLoS Med 1(2):e28

    Article  PubMed Central  PubMed  Google Scholar 

  34. Wieckowski S, Baumgaertner P, Corthesy P, Voelter V, Romero P, Speiser DE, Rufer N (2009) Fine structural variations of alphabetaTCRs selected by vaccination with naturalversus altered self-antigen in melanoma patients. J Immunol 183(8):5397–5406

    Article  CAS  PubMed  Google Scholar 

  35. Le Gal FA, Ayyoub M, Dutoit V, Widmer V, Jager E, Cerottini JC, Dietrich PY, Valmori D (2005) Distinct structural TCR repertoires in naturally occurring versus vaccine-induced CD8 + T-cell responses to the tumor-specific antigen NY-ESO-1. J Immunother 28(3):252–257

    Article  PubMed  Google Scholar 

  36. Speiser DE, Baumgaertner P, Voelter V, Devevre E, Barbey C, Rufer N, Romero P (2008) Unmodified self antigen triggers human CD8 T cells with stronger tumor reactivity than altered antigen. Proc Natl Acad Sci USA 105(10):3849–3854

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grants 81372249 and 81300431), the Foundation of the Ministry of Education of China for Returned Scholars, the Research Fund for the Doctoral Program of Higher Education of the Ministry of National Education, China (Grant 20114433110012), the Project of Department of Education of Guangdong Province (Grant 2012KJCX0025), the Key Project of Science and Technology of Guangzhou City (Grant 12C22121595), and the Natural Science Foundation of Guangdong Province, China (Grant S2013040014449).

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuhua Li or Yanjie He.

Additional information

Yuhua Li and Weijun Zhou have contributed to the work equally and should be regarded as co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhou, W., Du, J. et al. Generation of cytotoxic T lymphocytes specific for native or modified peptides derived from the epidermal growth factor receptor pathway substrate 8 antigen. Cancer Immunol Immunother 64, 259–269 (2015). https://doi.org/10.1007/s00262-014-1631-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-014-1631-y

Keywords

Navigation