Skip to main content

Advertisement

Log in

IRX-2, a novel immunotherapeutic, enhances and protects NK-cell functions in cancer patients

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

IRX-2 is a primary biologic which has been used for the therapy of head and neck squamous cell cancer (HNSCC) with promising clinical results. Since NK-cell function is compromised in HNSCC patients, we tested the effects of IRX-2 on the restoration of human NK-cell functions in vitro.

Methods

Peripheral blood mononuclear cells (PBMC) were isolated from 23 HNSCC patients and 10 normal controls (NC). The NK-cell phenotype and functions were compared before and after culture ± IRX-2 or ± 50 IU/ml rhIL-2. Flow cytometry was used to study the NK-cell phenotype, cytotoxic activity and cytokine expression.

Results

Impaired NK-cell cytotoxicity in HNSCC patients was related to lower expression of NKG2D, NKp30 and NKp46 receptors (P < 0.05) and not to a decreased frequency of NK cells. Incubation of patients’ NK cells with IRX-2 up-regulated the percentage of receptor-positive NK cells (P < 0.05). It also up-regulated cytotoxicity of patients’ NK cells (P < 0.01) more effectively than rhIL-2 (P < 0.01). IRX-2, but not rhIL-2, protected NK cells from suppression mediated by TGF-β, and it restored (P < 0.05) expression of activating NK-cell receptors and NK-cell cytotoxicity suppressed by TGF-β. Expression of pSMAD was decreased in NK cells treated with IRX-2 but not in those treated with rhIL-2.

Conclusions

IRX-2 was more effective than IL-2 in enhancing NK-cell cytotoxicity and protecting NK-cell function of HNSCC patients in vitro, emphasizing the potential advantage of IRX-2 as a component of future therapies for HNSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

NK cells:

Natural killer cells

HNSCC:

Head and neck squamous cell carcinoma

NC:

Normal controls

KIR:

Killer immunoglobulin-like receptor

TGF-β:

Transforming growth factor beta

rhIL-2:

Recombinant human interleukin 2

AJCC:

American joint committee on cancer

NCR:

Natural cytotoxicity receptor

References

  1. Wolf GT, Fee WE Jr, Dolan RW, Moyer JS, Kaplan MJ, Spring PM, Suen J, Kenady DE, Newman JG, Carroll WR, Gillespie MB, Freeman SM, Baltzer L, Kirkley TD, Brandwein HJ, Hadden JW (2011) Novel neoadjuvant immunotherapy regimen safety and survival in head and neck squamous cell cancer. Head Neck 33:1666–1674

    Article  PubMed  Google Scholar 

  2. Freeman SM, Franco JL, Kenady DE, Baltzer L, Roth Z, Brandwein HJ, Hadden JW (2011) A phase 1 safety study of an IRX-2 regimen in patients with squamous cell carcinoma of the head and neck. Am J Clin Oncol 34:173–178

    PubMed  CAS  Google Scholar 

  3. Berinstein NL, Wolf GT, Naylor PH, Baltzer L, Egan JE, Brandwein HJ, Whiteside TL, Goldstein LC, El-Naggar A, Badoual C, Fridman WH, White JM, Hadden JW (2011) Increased lymphocyte infiltration in patients with head and neck cancer treated with the IRX-2 immunotherapy regimen. Cancer Immunol Immunother. doi:10.1007/s00262-011-1134-z

    Google Scholar 

  4. Whiteside TL, Butterfiled LH, Naylor PH, Egan JE, Hadden JW, Baltzer L, Wolf GT, Berinstein NL (2011) A short course of neoadjuvant IRX-2 induces changes in peripheral blood lymphocyte subsets of patients with head and neck squamous cell carcinoma. Cancer Immunol Immunother. doi:10.1007/s00262-011-1136-x

    Google Scholar 

  5. Hadden J, Verastegui E, Barrera JL, Kurman M, Meneses A, Zinser JW, de la Garza J, Hadden E (2003) A trial of IRX-2 in patients with squamous cell carcinomas of the head and neck. Int Immunopharmacol 3:1073–1081

    Article  PubMed  CAS  Google Scholar 

  6. Czystowska M, Han J, Szczepanski MJ, Szajnik M, Quadrini K, Brandwein H, Hadden JW, Signorelli K, Whiteside TL (2009) IRX-2, a novel immunotherapeutic, protects human T cells from tumor-induced cell death. Cell Death Differ 16:708–718

    Article  PubMed  CAS  Google Scholar 

  7. Egan JE, Quadrini KJ, Santiago-Schwarz F, Hadden JW, Brandwein HJ, Signorelli KL (2007) IRX-2, a novel in vivo immunotherapeutic, induces maturation and activation of human dendritic cells in vitro. J Immunother 30:624–633

    Article  PubMed  CAS  Google Scholar 

  8. Trotta R, Col JD, Yu J, Ciarlariello D, Thomas B, Zhang X, Allard J 2nd, Wei M, Mao H, Byrd JC, Perrotti D, Caligiuri MA (2008) TGF-beta utilizes SMAD3 to inhibit CD16-mediated IFN-gamma production and antibody-dependent cellular cytotoxicity in human NK cells. J Immunol 181:3784–3792

    PubMed  CAS  Google Scholar 

  9. Caligiuri MA (2008) Human natural killer cells. Blood 112:461–469

    Article  PubMed  CAS  Google Scholar 

  10. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331:44–49

    Article  PubMed  CAS  Google Scholar 

  11. Gonzalez S, Groh V, Spies T (2006) Immunobiology of human NKG2D and its ligands. Curr Top Microbiol Immunol 298:121–138

    Article  PubMed  CAS  Google Scholar 

  12. Brandt CS, Baratin M, Yi EC, Kennedy J, Gao Z, Fox B, Haldeman B, Ostrander CD, Kaifu T, Chabannon C, Moretta A, West R, Xu W, Vivier E, Levin SD (2009) The B7 family member B7–H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans. J Exp Med 206:1495–1503

    Article  PubMed  CAS  Google Scholar 

  13. Bryceson YT, March ME, Ljunggren HG, Long EO (2006) Activation, coactivation, and costimulation of resting human natural killer cells. Immunol Rev 214:73–91

    Article  PubMed  CAS  Google Scholar 

  14. Schantz SP, Shillitoe EJ, Brown B, Campbell B (1986) Natural killer cell activity and head and neck cancer: a clinical assessment. J Natl Cancer Inst 77:869–875

    PubMed  CAS  Google Scholar 

  15. Schantz SP, Goepfert H (1987) Multimodality therapy and distant metastases. The impact of natural killer cell activity. Arch Otolaryngol Head Neck Surg 113:1207–1213

    Article  PubMed  CAS  Google Scholar 

  16. Schantz SP, Dimery I, Lippman SM, Clayman GL, Pellegrino C, Morice R (1992) A phase II study of interleukin-2 and interferon-alpha in head and neck cancer. Invest New Drugs 10:217–223

    Article  PubMed  CAS  Google Scholar 

  17. Szczepanski MJ, Szajnik M, Welsh A, Whiteside TL, Boyiadzis M (2011) Blast-derived microvesicles in sera of acute myeloid leukemia patients suppresses NK cell function via membrane-associated TGF-{beta}1. Haematologica 96:1302–1309

    Article  PubMed  Google Scholar 

  18. Lee JC, Lee KM, Kim DW, Heo DS (2004) Elevated TGF-beta1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J Immunol 172:7335–7340

    PubMed  CAS  Google Scholar 

  19. Dasgupta S, Bhattacharya-Chatterjee M, O’Malley BW Jr, Chatterjee SK (2005) Inhibition of NK cell activity through TGF-beta 1 by down-regulation of NKG2D in a murine model of head and neck cancer. J Immunol 175:5541–5550

    PubMed  CAS  Google Scholar 

  20. Rabinowich H, Vitolo D, Altarac S, Herberman RB, Whiteside TL (1992) Role of cytokines in the adoptive immunotherapy of an experimental model of human head and neck cancer by human IL-2-activated natural killer cells. J Immunol 149:340–349

    PubMed  CAS  Google Scholar 

  21. Heo DS, Snyderman C, Gollin SM, Pan S, Walker E, Deka R, Barnes EL, Johnson JT, Herberman RB, Whiteside TL (1989) Biology, cytogenetics, and sensitivity to immunological effector cells of new head and neck squamous cell carcinoma lines. Cancer Res 49:5167–5175

    PubMed  CAS  Google Scholar 

  22. Kim GG, Donnenberg VS, Donnenberg AD, Gooding W, Whiteside TL (2007) A novel multiparametric flow cytometry-based cytotoxicity assay simultaneously immunophenotypes effector cells: comparisons to a 4 h 51Cr-release assay. J Immunol Meth 325:51–66

    Article  CAS  Google Scholar 

  23. Whiteside TL, Bryant J, Day R, Herberman RB (1990) Natural killer cytotoxicity in the diagnosis of immune dysfunction: criteria for a reproducible assay. J Clin Lab Anal 4:102–114

    Article  PubMed  CAS  Google Scholar 

  24. Wu JD, Higgins LM, Steinle A, Cosman D, Haugk K, Plymate SR (2004) Prevalent expression of the immunostimulatory MHC class I chain-related molecule is counteracted by shedding in prostate cancer. J Clin Invest 114:560–568

    PubMed  CAS  Google Scholar 

  25. Castriconi R, Cantoni C, Della Chiesa M, Vitale M, Marcenaro E, Conte R, Biassoni R, Bottino C, Moretta L, Moretta A (2003) Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci USA 100:4120–4125

    Article  PubMed  CAS  Google Scholar 

  26. Wulff S, Pries R, Borngen K, Trenkly T, Wollenberg B (2009) Decreased levels of circulating regulatory NK cells in patients with head and neck cancer throughout all tumor stages. Anticancer Res 29:3053–3057

    PubMed  Google Scholar 

  27. Waldhauer I, Steinle A (2008) NK cells and cancer immunosurveillance. Oncogene 27:5932–5943

    Article  PubMed  CAS  Google Scholar 

  28. Sivori S, Vitale M, Morelli L, Sanseverino L, Augugliaro R, Bottino C, Moretta L, Moretta A (1997) p46, a novel natural killer cell-specific surface molecule that mediates cell activation. J Exp Med 186:1129–1136

    Article  PubMed  CAS  Google Scholar 

  29. Pende D, Parolini S, Pessino A, Sivori S, Augugliaro R, Morelli L, Marcenaro E, Accame L, Malaspina A, Biassoni R, Bottino C, Moretta L, Moretta A (1999) Identification and molecular characterization of NKp30, a novel triggering receptor involved in a natural cytotoxicity mediated by human natural killer cells. J Exp Med 190:1505–1516

    Article  PubMed  CAS  Google Scholar 

  30. Garcia-Iglesias T, del Toro-Arreola A, Albarran-Somoza B, del Toro-Arreola S, Sanchez-Hernandez PE, Ramirez-Duenas MG, Balderas-Pena LA, Bravo-Cuellar A, Ortiz-Lazareno PC, Daneri-Navarro A (2009) Low NKp30, NKp46 and NKG2D expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions. BMC Cancer 9:186. doi:10.1186/1471-2407-9-186

    Article  PubMed  Google Scholar 

  31. Szczepanski MJ, Szajnik M, Welsh A, Foon KA, Whiteside TL, Boyiadzis M (2010) Interleukin-15 enhances natural killer cell cytotoxicity in patients with acute myeloid leukemia by upregulating the activating NK cell receptors. Cancer Immunol Immunother 59:73–79

    Article  PubMed  CAS  Google Scholar 

  32. Chen XM, Xu XQ, Sun K, Hallett WH, Zhao JD, Zhang DL (2008) NKG2D ligands expression and NKG2D-mediated cytotoxicity in human laryngeal squamous carcinoma cells. Scand J Immunol 67:441–447

    Article  PubMed  CAS  Google Scholar 

  33. Clayton A, Mitchell JP, Court J, Linnane S, Mason MD, Tabi Z (2008) Human tumor-derived exosomes down-modulate NKG2D expression. J Immunol 180:7249–7258

    PubMed  CAS  Google Scholar 

  34. Martin-Fontecha A, Thomsen LL, Brett S, Gerard C, Lipp M, Lanzavecchia A, Sallusto F (2004) Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming. Nat Immunol 5:1260–1265

    Article  PubMed  CAS  Google Scholar 

  35. Walzer T, Dalod M, Robbins SH, Zitvogel L, Vivier E (2005) Natural-killer cells and dendritic cells: “l’union fait la force”. Blood 106:2252–2258

    Article  PubMed  CAS  Google Scholar 

  36. Cooper MA, Bush JE, Fehniger TA, VanDeusen JB, Waite RE, Liu Y, Aguila HL, Caligiuri MA (2002) In vivo evidence for a dependence on interleukin 15 for survival of natural killer cells. Blood 100:3633–3638

    Article  PubMed  CAS  Google Scholar 

  37. Czystowska M, Szczepanski MJ, Szajnik M, Quadrini K, Brandwein H, Hadden JW, Whiteside TL (2011) Mechanisms of T-cell protection from death by IRX-2: a new immunotherapeutic. Cancer Immunol Immunother 60:495–506

    Article  PubMed  CAS  Google Scholar 

  38. Schilling B, Harasymczuk M, Schuler P, Egan JE, Whiteside TL (2011) IRX-2, a novel biologic, favors the expansion of T effector over T regulatory cells in a human tumor microenvironment model. J Mol Med. doi:10.1007/s00109-011-0813-8

    PubMed  Google Scholar 

  39. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425:577–584

    Article  PubMed  CAS  Google Scholar 

  40. Song H, Hur DY, Kim KE, Park H, Kim T, Kim CW, Bang S, Cho DH (2006) IL-2/IL-18 prevent the down-modulation of NKG2D by TGF-beta in NK cells via the c-Jun N-terminal kinase (JNK) pathway. Cell Immunol 242:39–45

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported in part by NIH grant PO-1 CA 109688 to TLW. BS was supported by a grant from IRX Therapeutics Inc.

Conflict of interest

Two of the authors (BS and JEE) received support from IRX Therapeutics Inc. The other authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. L. Whiteside.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schilling, B., Halstead, E.S., Schuler, P. et al. IRX-2, a novel immunotherapeutic, enhances and protects NK-cell functions in cancer patients. Cancer Immunol Immunother 61, 1395–1405 (2012). https://doi.org/10.1007/s00262-011-1197-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-1197-x

Keywords

Navigation