Skip to main content

Advertisement

Log in

Chordoma and chondrosarcoma gene profile: implications for immunotherapy

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Chordoma and chondrosarcoma are malignant bone tumors characterized by the abundant production of extracellular matrix. The resistance of these tumors to conventional therapeutic modalities has prompted us to delineate the gene expression profile of these two tumor types, with the expectation to identify potential molecular therapeutic targets. Furthermore the transcriptional profile of chordomas and chrondrosarcomas was compared to a wide variety of sarcomas as well as to that of normal tissues of similar lineage, to determine whether they express unique gene signatures among other tumors of mesenchymal origin, and to identify changes associated with malignant transformation. A HG-U133A Affymetrix Chip platform was used to determine the gene expression signature in 6 chordoma and 14 chondrosarcoma lesions. Validation of selected genes was performed by qPCR and immunohistochemistry (IHC) on an extended subset of tumors. By unsupervised clustering, chordoma and chondrosarcoma tumors grouped together in a genomic cluster distinct from that of other sarcoma types. They shared overexpression of many extracellular matrix genes including aggrecan, type II & X collagen, fibronectin, matrillin 3, high molecular weight-melanoma associated antigen (HMW-MAA), matrix metalloproteinase MMP-9, and MMP-19. In contrast, T Brachyury and CD24 were selectively expressed in chordomas, as were Keratin 8,13,15,18 and 19. Chondrosarcomas are distinguished by high expression of type IX and XI collagen. Because of its potential usefulness as a target for immunotherapy, the expression of HMW-MAA was analyzed by IHC and was detected in 62% of chordomas and 48% of chondrosarcomas, respectively. Furthermore, western blotting analysis showed that HMW-MAA synthesized by chordoma cell lines has a structure similar to that of the antigen synthesized by melanoma cells. In conclusion, chordomas and chondrosarcomas share a similar gene expression profile of up-regulated extracellular matrix genes. HMW-MAA represents a potential useful target to apply immunotherapy to these tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Antonescu CR, Viale A, Sarran L, Tschernyavsky SJ, Gonen M, Segal NH, Maki RG, Socci ND, DeMatteo RP, Besmer P (2004) Gene expression in gastrointestinal stromal tumors is distinguished by KIT genotype and anatomic site. Clin Cancer Res 10:3282–3290

    Article  PubMed  CAS  Google Scholar 

  2. Agaram NP, Besmer P, Wong GC, Guo T, Socci ND, Maki RG, DeSantis D, Brennan MF, Singer S, DeMatteo RP, Antonescu CR (2007) Pathologic and molecular heterogeneity in imatinib-stable or imatinib-responsive gastrointestinal stromal tumors. Clin Cancer Res 13:170–181

    Article  PubMed  CAS  Google Scholar 

  3. Bergh P, Kindblom LG, Gunterberg B, Remotti F, Ryd W, Meis-Kindblom JM (2000) Prognostic factors in chordoma of the sacrum and mobile spine: a study of 39 patients. Cancer 88:2122–2134

    Article  PubMed  CAS  Google Scholar 

  4. Bertoni F, Bacchini P, Hogendoorn P (2002) Chondrosarcoma. IARC Press, Lyon

    Google Scholar 

  5. Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B (1999) Sox9 is required for cartilage formation. Nat Genet 22:85–89

    Article  PubMed  CAS  Google Scholar 

  6. Bjornsson J, McLeod RA, Unni KK, Ilstrup DM, Pritchard DJ (1998) Primary chondrosarcoma of long bones and limb girdles. Cancer 83:2105–2119

    Article  PubMed  CAS  Google Scholar 

  7. Block JA, Inerot SE, Gitelis S, Kimura JH (1991) The effects of long term monolayer culture on the proteoglycan phenotype of a clonal population of mature human malignant chondrocytes. Connect Tissue Res 26: 295–313

    Article  PubMed  CAS  Google Scholar 

  8. Bos TJ, Margiotta P, Bush L, Wasilenko W (1999) Enhanced cell motility and invasion of chicken embryo fibroblasts in response to Jun over-expression. Int J Cancer 81:404–410

    Article  PubMed  CAS  Google Scholar 

  9. Campoli MR, Chang CC, Kageshita T, Wang X, McCarthy JB, Ferrone S (2004) Human high molecular weight-melanoma-associated antigen (HMW-MAA): a melanoma cell surface chondroitin sulfate proteoglycan (MSCP) with biological and clinical significance. Crit Rev Immunol 24:267–296

    Article  PubMed  CAS  Google Scholar 

  10. de Bri E, Reinholt FP, Heinegard D, Mengarelli-Widholm S, Norgard M, Svensson O (1996) Bone sialoprotein and osteopontin distribution at the osteocartilaginous interface. Clin Orthop Relat Res 330:251–260

    Article  PubMed  Google Scholar 

  11. Demircan K, Hirohata S, Nishida K, Hatipoglu OF, Oohashi T, Yonezawa T, Apte SS, Ninomiya Y (2005) ADAMTS-9 is synergistically induced by interleukin-1beta and tumor necrosis factor alpha in OUMS-27 chondrosarcoma cells and in human chondrocytes. Arthritis Rheum 52:1451–1460

    Article  PubMed  CAS  Google Scholar 

  12. Eyre DR, Wu JJ, Fernandes RJ, Pietka TA, Weis MA (2002) Recent developments in cartilage research: matrix biology of the collagen II/IX/XI heterofibril network. Biochem Soc Trans 30:893–899

    Article  PubMed  CAS  Google Scholar 

  13. Fuchs B, Dickey ID, Yaszemski MJ, Inwards CY, Sim FH (2005) Operative management of sacral chordoma. J Bone Joint Surg Am 87:2211–2216

    Article  PubMed  Google Scholar 

  14. Gitelis S, Bertoni F, Picci P, Campanacci M (1981) Chondrosarcoma of bone. The experience at the Istituto Ortopedico Rizzoli. J Bone Joint Surg Am 63:1248–1257

    PubMed  CAS  Google Scholar 

  15. Gottschalk D, Fehn M, Patt S, Saeger W, Kirchner T, Aigner T (2001) Matrix gene expression analysis and cellular phenotyping in chordoma reveals focal differentiation pattern of neoplastic cells mimicking nucleus pulposus development. Am J Pathol 158:1571–1578

    PubMed  CAS  Google Scholar 

  16. Healey JH, Lane JM (1986) Chondrosarcoma. Clin Orthop Relat Res:119–129

  17. Healey JH, Lane JM (1989) Chordoma: a critical review of diagnosis and treatment. Orthop Clin North Am 20:417–426

    PubMed  CAS  Google Scholar 

  18. Henderson SR, Guiliano D, Presneau N, McLean S, Frow R, Vujovic S, Anderson J, Sebire N, Whelan J, Athanasou N, Flanagan AM, Boshoff C (2005) A molecular map of mesenchymal tumors. Genome Biol 6:R76

    Article  PubMed  CAS  Google Scholar 

  19. Ishida T, Dorfman HD (1994) Chondroid chordoma versus low-grade chondrosarcoma of the base of the skull: can immunohistochemistry resolve the controversy? J Neurooncol 18:199–206

    Article  PubMed  CAS  Google Scholar 

  20. Kusama M, Kageshita T, Chen ZJ, Ferrone S (1989) Characterization of syngeneic antiidiotypic monoclonal antibodies to murine anti-human high molecular weight melanoma-associated antigen monoclonal antibodies. J Immunol 143:3844–3852

    PubMed  CAS  Google Scholar 

  21. Lefebvre V, Huang W, Harley VR, Goodfellow PN, de Crombrugghe B (1997) SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol Cell Biol 17:2336–2346

    PubMed  CAS  Google Scholar 

  22. Luo W, Ko E, Hsu JC, Wang X, Ferrone S (2006) Targeting melanoma cells with human high molecular weight-melanoma associated antigen-specific antibodies elicited by a peptide mimotope: functional effects. J Immunol 176:6046–6054

    PubMed  CAS  Google Scholar 

  23. Mirra J, Rocca C, Nelson S, Mertens F (2002) Notochordal tumours. IARC Press, Lyon

    Google Scholar 

  24. Mittelman A, Chen ZJ, Yang H, Wong GY, Ferrone S (1992) Human high molecular weight melanoma-associated antigen (HMW-MAA) mimicry by mouse anti-idiotypic monoclonal antibody MK2-23: induction of humoral anti-HMW-MAA immunity and prolongation of survival in patients with stage IV melanoma. Proc Natl Acad Sci USA 89:466–470

    Article  PubMed  CAS  Google Scholar 

  25. Mittelman A, Chen ZJ, Liu CC, Hirai S, Ferrone S (1994) Kinetics of the immune response and regression of metastatic lesions following development of humoral anti-high molecular weight-melanoma associated antigen immunity in three patients with advanced malignant melanoma immunized with mouse antiidiotypic monoclonal antibody MK2-23. Cancer Res 54:415–421

    PubMed  CAS  Google Scholar 

  26. Naka T, Boltze C, Kuester D, Schulz TO, Samii A, Herold C, Ostertag H, Roessner A (2004) Expression of matrix metalloproteinase (MMP)-1, MMP-2, MMP-9, cathepsin B, and urokinase plasminogen activator in non-skull base chordoma. Am J Clin Pathol 122:926–930

    Article  PubMed  CAS  Google Scholar 

  27. Ostroumov E, Hunter CJ (2007) The role of extracellular factors in human metastatic chordoma cell growth in vitro. Spine 32:2957–2964

    PubMed  Google Scholar 

  28. Overall CM, Kleifeld O (2006) Tumour microenvironment—opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer 6:227–239

    Article  PubMed  CAS  Google Scholar 

  29. Ozaki T, Hillmann A, Winkelmann W (1997) Surgical treatment of sacrococcygeal chordoma. J Surg Oncol 64:274–279

    Article  PubMed  CAS  Google Scholar 

  30. Ozanne BW, Spence HJ, McGarry LC, Hennigan RF (2007) Transcription factors control invasion: AP-1 the first among equals. Oncogene 26:1–10

    Article  PubMed  CAS  Google Scholar 

  31. Palena C, Polev DE, Tsang KY, Fernando RI, Litzinger M, Krukovskaya LL, Baranova AV, Kozlov AP, Schlom J (2007) The human T-box mesodermal transcription factor Brachyury is a candidate target for T-cell-mediated cancer immunotherapy. Clin Cancer Res 13:2471–2478

    Article  PubMed  CAS  Google Scholar 

  32. Pei Y, Harvey A, Yu XP, Chandrasekhar S, Thirunavukkarasu K (2006) Differential regulation of cytokine-induced MMP-1 and MMP-13 expression by p38 kinase inhibitors in human chondrosarcoma cells: potential role of Runx2 in mediating p38 effects. Osteoarthritis Cartilage 14:749–758

    Article  PubMed  Google Scholar 

  33. Polette M, Nawrocki-Raby B, Gilles C, Clavel C, Birembaut P (2004) Tumour invasion and matrix metalloproteinases. Crit Rev Oncol Hematol 49:179–186

    Article  PubMed  Google Scholar 

  34. Pring ME, Weber KL, Unni KK, Sim FH (2001) Chondrosarcoma of the pelvis. A review of sixty-four cases. J Bone Joint Surg Am 83-A:1630–1642

    CAS  Google Scholar 

  35. Rosenberg AE, Brown GA, Bhan AK, Lee JM (1994) Chondroid chordoma—a variant of chordoma. A morphologic and immunohistochemical study. Am J Clin Pathol 101:36–41

    PubMed  CAS  Google Scholar 

  36. Scott LA, Vass JK, Parkinson EK, Gillespie DA, Winnie JN, Ozanne BW (2004) Invasion of normal human fibroblasts induced by v-Fos is independent of proliferation, immortalization, and the tumor suppressors p16INK4a and p53. Mol Cell Biol 24:1540–1559

    Article  PubMed  CAS  Google Scholar 

  37. Segal NH, Pavlidis P, Antonescu CR, Maki RG, Noble WS, DeSantis D, Woodruff JM, Lewis JJ, Brennan MF, Houghton AN, Cordon-Cardo C (2003) Classification and subtype prediction of adult soft tissue sarcoma by functional genomics. Am J Pathol 163:691–700

    PubMed  CAS  Google Scholar 

  38. Sekiya I, Tsuji K, Koopman P, Watanabe H, Yamada Y, Shinomiya K, Nifuji A, Noda M (2000) SOX9 enhances aggrecan gene promoter/enhancer activity and is up-regulated by retinoic acid in a cartilage-derived cell line, TC6. J Biol Chem 275:10738–10744

    Article  PubMed  CAS  Google Scholar 

  39. Sundaresan N, Galicich JH, Chu FC, Huvos AG (1979) Spinal chordomas. J Neurosurg 50:312–319

    PubMed  CAS  Google Scholar 

  40. Temponi M, Kageshita T, Perosa F, Ono R, Okada H, Ferrone S (1989) Purification of murine IgG monoclonal antibodies by precipitation with caprylic acid: comparison with other methods of purification. Hybridoma 8:85–95

    PubMed  CAS  Google Scholar 

  41. Tirabosco R, Mangham DC, Rosenberg AE, Vujovic S, Bousdras K, Pizzolitto S, De Maglio G, den Bakker MA, Di Francesco L, Kalil RK, Athanasou NA, O’Donnell P, McCarthy EF, Flanagan AM (2008) Brachyury expression in extra-axial skeletal and soft tissue chordomas: a marker that distinguishes chordoma from mixed tumor/myoepithelioma/parachordoma in soft tissue. Am J Surg Pathol 32(4):572–580

    Article  PubMed  Google Scholar 

  42. Uria JA, Balbin M, Lopez JM, Alvarez J, Vizoso F, Takigawa M, Lopez-Otin C (1998) Collagenase-3 (MMP-13) expression in chondrosarcoma cells and its regulation by basic fibroblast growth factor. Am J Pathol 153:91–101

    PubMed  CAS  Google Scholar 

  43. Vujovic S, Henderson S, Presneau N, Odell E, Jacques TS, Tirabosco R, Boshoff C, Flanagan AM (2006) Brachyury, a crucial regulator of notochordal development, is a novel biomarker for chordomas. J Pathol 209:157–165

    Article  PubMed  CAS  Google Scholar 

  44. Wagener R, Ehlen HW, Ko YP, Kobbe B, Mann HH, Sengle G, Paulsson M (2005) The matrilins-adaptor proteins in the extracellular matrix. FEBS Lett 579:3323–3329

    Article  PubMed  CAS  Google Scholar 

  45. Xie WF, Zhang X, Sakano S, Lefebvre V, Sandell LJ (1999) Trans-activation of the mouse cartilage-derived retinoic acid-sensitive protein gene by Sox9. J Bone Miner Res 14:757–763

    Article  PubMed  CAS  Google Scholar 

  46. Zharkikh A, Li WH (1995) Estimation of confidence in phylogeny: the complete-and-partial bootstrap technique. Mol Phylogenet Evol 4:44–63

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina R. Antonescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwab, J.H., Boland, P.J., Agaram, N.P. et al. Chordoma and chondrosarcoma gene profile: implications for immunotherapy. Cancer Immunol Immunother 58, 339–349 (2009). https://doi.org/10.1007/s00262-008-0557-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-008-0557-7

Keywords

Navigation