Skip to main content

Advertisement

Log in

A CD80-transfected human breast cancer cell variant induces HER-2/neu–specific T cells in HLA-A*02–matched situations in vitro as well as in vivo

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Adjuvant treatment is still only working in a small percentage of breast cancer patients. Therefore, new strategies need to be developed. Immunotherapies are a very promising approach because they could successfully attack tumor cells in the stage of dormancy. To assess the feasibility of using an allogeneic approach for vaccination of breast cancer patients, we selected a CD80-transfected breast cancer cell line based on its immunogenic properties. Using CD80+ KS breast cancer cells and human leukocyte antigen (HLA)-A*02–matched peripheral blood mononuclear cells (PBMCs) of breast cancer patients in allogeneic mixed lymphocyte–tumor cell cultures (MLTCs), it was possible to isolate HLA-A*02–restricted cytotoxic T cells (CTLs). Furthermore, a genetically modified KS variant expressing influenza A matrix protein serving as a surrogate tumor-associated antigen (TAA) was able to stimulate flu peptide-specific T cells alongside the induction of alloresponses in MLTCs. KS breast cancer cells were demonstrated to express already known TAAs such as CEA, MUC-1, MAGE-1, MAGE-2, and MAGE-3. To further improve antigenicity, HER-2/neu was added to this panel as a marker antigen known to elicit HLA-A*02–restricted CTLs in patients with breast cancer. Thus, the antigen-processing and antigen-presentation capacity of KS cells was further demonstrated by the stimulation of HER-2/neu–specific CD8+ T cells in PBMCs of breast cancer patients in vitro. These results gave a good rationale for a phase I/II trial, where the CD80+ HER-2/neu–overexpressing KS variant is actually used as a cellular vaccine in patients with metastatic breast cancer. As a proof of principle, we present data from two patients where a significant increase of interferon-γ (IFN-γ) release was detected when postvaccination PBMCs were stimulated by allogeneic vaccine cells as well as by HLA-A*02–restricted HER-2/neu epitopes. In whole cell vaccine trials, monitoring is particularly challenging because of strong alloresponses and limited knowledge of TAAs. In this study, a panel of HER-2/neu epitopes, together with the quantitative real time (qRT)-PCR method to analyze vaccine-induced cytokines secreted by T cells, proved to be highly sensitive and feasible to perform an “immunological staging” following vaccination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arienti F, Belli F, Napolitano F, Sule-Suso J, Mazzocchi A, Gallino GF, Cattelan A, Santantonio C, Rivoltini L, Melani C, Colombo MP, Cascinelli N, Maio M, Parmiani G, Sanantonio C (2000) Vaccination of melanoma patients with interleukin 4 gene-transduced allogeneic melanoma cells. Hum Gene Ther 10:2907–2916

    Article  Google Scholar 

  2. Baskar S, Nabavi N, Glimcher LH, Ostrand-Rosenberg S (1993) Tumor cells expressing major histocompatibility complex class II and B7 activation molecules stimulate potent tumor-specific immunity. J Immunother 14:209–215

    CAS  PubMed  Google Scholar 

  3. Baxevanis CN, Sotiropoulou PA, Sotiriadou NN, Papamichail M (2004) Immunobiology of Her-2/neu oncoprotein and its potential application in cancer immunotherapy. Cancer Immunol Immunother 53:166–175

    Article  CAS  PubMed  Google Scholar 

  4. Bednarek MA, Engl SA, Gammon MC, Lindquist JA, Porter G, Williamson AR, Zweerink HJ (1991) Soluble HLA-A2.1 restricted peptides that are recognized by influenza virus specific cytotoxic T lymphocytes. J Immunol Methods 139:41–47

    Article  CAS  PubMed  Google Scholar 

  5. Brossart P, Heinrich KS, Stuhler G, Behnke L, Reichardt VL, Stevanovic S, Muhm A, Rammensee HG, Kanz L, Brugger W (1999) Identification of HLA-A2-restricted T-cell epitopes derived from the MUC1 tumor antigen for broadly applicable vaccine therapies. Blood 93:4309–4317

    CAS  PubMed  Google Scholar 

  6. Cayeux S, Beck C, Aicher A, Dorken B, Blankenstein T (1995) Tumor cells cotransfected with interleukin-7 and B7.1 genes induce CD25 and CD28 on tumor-infiltrating T lymphocytes and are strong vaccines. Eur J Immunol 25:2325–2331

    CAS  PubMed  Google Scholar 

  7. Chen L, Ashe S, Brady WA, Hellstrom I, Hellstrom KE, Ledbetter JA, McGowan P, Linsley PS (1992) Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell 71:1093–1102

    CAS  PubMed  Google Scholar 

  8. Courmier JN, Panelli MC, Hackett JA, Bettinotti MP, Mixon A, Wunderlich J, Parker LL, Restifo NP, Ferrone S, Marincola FM (1999) Natural variation of the expression of HLA and endogenous antigen modulates CTL recognition in an in vitro melanoma model. Int J Cancer 80:781–790

    Article  PubMed  Google Scholar 

  9. Crowley NJ, Slingluff CL Jr, Vervaert CE, Darrow TL, Seigler HF (1990) Inhibition of the growth of human melanoma xenografts in nude mice by human tumor-specific cytotoxic T-cells. J Surg Oncol 43:67–72

    CAS  PubMed  Google Scholar 

  10. Deuschle U, Pepperkok R, Wang FB, Giordano TJ, McAllister WT, Ansorge W, Bujard H (1989) Regulated expression of foreign genes in mammalian cells under the control of coliphage T3 RNA polymerase and lac repressor. Proc Natl Acad Sci U S A 86(14):5400–5404

    CAS  PubMed  Google Scholar 

  11. Dols A, Meijer SL, Smith JW II, Fox BA, Urba WJ (2003) Allogeneic breast cancer cell vaccines. Clin Breast Cancer 3[Suppl 4]:173–180

    Google Scholar 

  12. Dols A, Smith JW II, Meijer SL, Fox BA, Hu HM, Walker E, Rosenheim S, Moudgil T, Doran T, Wood W, Seligman M, Alvord WG, Schoof D, Urba WJ (2003) Vaccination of women with metastatic breast cancer, using a costimulatory gene (CD80)-modified, HLA-A2-matched, allogeneic, breast cancer cell line: clinical and immunological results. Hum Gene Ther 14:1117–1123

    Article  CAS  PubMed  Google Scholar 

  13. Dols A, Meijer SL, Hu HM, Goodell V, Disiss ML, von Mensdorff-Pouilly S, Verheijen R, Alvord WG, Smith JW II, Urba WJ, Fox BA (2003) Identification of tumor-specific antibodies in patients with breast cancer vaccinated with gene-modified allogeneic tumor cells. J Immunother 26:163–170

    Article  PubMed  Google Scholar 

  14. Fenton RG, Turcovski-Corrales SM, Taub DD (1998) Induction of melanoma antigen-specific cytotoxic T lymphocytes in vitro by stimulation with B7-expressing human melanoma cell lines. J Immunother 21:95–108

    CAS  PubMed  Google Scholar 

  15. Fisk B, Blevins TL, Wharton JT, Ioannides CG (1995) Identification of an immunodominant peptide of Her-2/neu protooncogene recognized by ovarian tumor-specific cytotoxic T lymphocyte lines. J Exp Med 181:2109–2117

    Article  CAS  PubMed  Google Scholar 

  16. Fisk B, Hudson JM, Kavanagh J, Wharton JT, Murray JL, Ioannides CG, Kudelka AP (1997) Existent proliferative response of peripheral blood mononuclear cells from healthy donors and ovarian cancer patients to Her-2 peptides. Anticancer Res 17:45–53

    CAS  PubMed  Google Scholar 

  17. Giuliano AE, Sparks FC, Patterson K, Spears I, Morton DL (1986) Adjuvant chemo-immunotherapy in stage II carcinoma of the breast. J Surg Oncol 31:255–259

    CAS  PubMed  Google Scholar 

  18. Gückel B, Lindauer M, Rudy W, Habicht A, Siebels M, Kaul S, Bastert G, Meuer SC, Moebius U (1995) CD80-transfected human breast and ovarian tumor cell lines: improved immunogenicity and induction of cytolytic CD8+ T lymphocytes. Cytokines Mol Ther 1:211–221

    PubMed  Google Scholar 

  19. Gückel B, Meyer GC, Rudy W, Batrla R, Meuer SC, Bastert G, Wallwiener D, Moebius U (1999) Interleukin-12 requires initial CD80-mediated T-cell activation to support immune responses toward human breast and ovarian carcinoma. Cancer Gene Ther 6:228–237

    Article  PubMed  Google Scholar 

  20. Gückel B, Meuer S, Bastert G, Wallwiener D (2003) Tumor-associated antigens as tools in immunodiagnostics and immunotherapy of breast cancer. Geburtsh Frauenheilk 64:130–139

    Article  Google Scholar 

  21. Habicht A, Lindauer M, Galmbacher P, Rudy W, Gebert J, Schackert HK, Meuer SC, Moebius U (1995) Development of immunogenic colorectal cancer cell lines for vaccination: expression of CD80 (B7.1) is not sufficient to restore impaired primary T cell activation in vitro. Eur J Cancer 31A:2396–2402

    Article  Google Scholar 

  22. Hellström KE, Hellström I, Chen L (1995) Can co-stimulated tumor immunity be therapeutically efficacious? Immunol Rev 145:123–145

    PubMed  Google Scholar 

  23. Hicklin DJ, Marincola FM, Ferrone S (1999) HLA class I antigen downregulation in human cancers: T-cell immunotherapy revives an old story. Mol Med Today 5:178–186

    Article  CAS  PubMed  Google Scholar 

  24. Hirano N, Takahashi T, Takahashi T, Azuma M, Okumura K, Yazaki Y, Yagita H, Hirai H (1997) Protective and therapeutic immunity against leukemia induced by irradiated B7-1 (CD80)-transduced leukemic cells. Hum Gene Ther 8:1375–1384

    CAS  PubMed  Google Scholar 

  25. Imro MA, Dellabona P, Manici S, Heltai S, Consogno G, Bellone M, Rugarli C, Protti MP (1998) Human melanoma cells transfected with the B7-2 co-stimulatory molecule induce tumor-specific CD8+ cytotoxic T lymphocytes in vitro. Hum Gene Ther 9:1335–1344

    CAS  PubMed  Google Scholar 

  26. Jäger E, Jager D, Knuth A (1998) Strategies for the development of vaccines to treat breast cancer. Recent Results Cancer Res 152:94–102

    PubMed  Google Scholar 

  27. Jiang XP, Yang DC, Elliott RL, Head JF (2000) Vaccination with a mixed vaccine of autogenous and allogeneic breast cancer cells and tumor associated antigens CA15-3, CEA and CA125–results in immune and clinical responses in breast cancer patients. Cancer Biother Radiopharm 15:495–505

    CAS  PubMed  Google Scholar 

  28. Jung D, Jaeger E, Cayeux S, Blankenstein T, Hilmes C, Karbach J, Moebius U, Knuth A, Huber C, Seliger B (1998) Strong immunogenic potential of a B7 retroviral expression vector: generation of HLA-B7-restricted CTL response against selectable marker genes. Hum Gene Ther 9:53–62

    CAS  PubMed  Google Scholar 

  29. Kammula US, Lee KH, Riker AI, Wang E, Ohnmacht GA, Rosenberg SA, Marincola FM (1999) Functional analysis of antigen-specific T lymphocytes by serial measurement of gene expression in peripheral blood mononuclear cells and tumor specimens. J Immunol 163:6867–6875

    CAS  PubMed  Google Scholar 

  30. Kammula US, Marincola FM, Rosenberg SA (2000) Real-time quantitative polymerase chain reaction assessment of immune reactivity in melanoma patients after tumor peptide vaccination. J Natl Cancer Inst 92:1336–1344

    Article  CAS  PubMed  Google Scholar 

  31. Kaufmann AM, Gissmann L, Schreckenberger C, Qiao L (1997) Cervical carcinoma cells transfected with the CD80 gene elicit a primary cytotoxic T lymphocyte response specific for HPV 16 E7 antigens. Cancer Gene Ther 4:377–382

    CAS  PubMed  Google Scholar 

  32. Kayser S, Watermann I, Rentzsch C, Weinschenk T, Wallwiener D, Gückel B (2003) Tumor-associated antigen profiling in breast and ovarian cancer: mRNA, protein or T cell recognition? J Cancer Res Clin Oncol 129:397–409

    Article  CAS  PubMed  Google Scholar 

  33. Knight BC, Souberbielle BE, Rizzardi GP, Ball SE, Dalgleish AG (1996) Allogeneic murine melanoma cell vaccine: a model for the development of human allogeneic cancer vaccine. Melanoma Res 6:299–306

    CAS  PubMed  Google Scholar 

  34. Kruse N, Pette M, Toyka K, Rieckmann P (1997) Quantification of cytokine mRNA expression by RT PCR in samples of previously frozen blood. J Immunol Methods 210:195–203

    Article  CAS  PubMed  Google Scholar 

  35. Li Y, McGowan P, Hellstrom I, Hellstrom KE, Chen L (1994) Costimulation of tumor-reactive CD4+ and CD8+ T lymphocytes by B7, a natural ligand for CD28, can be used to treat established mouse melanoma. J Immunol 153:421–428

    CAS  PubMed  Google Scholar 

  36. Lindauer M, Rudy W, Gückel B, Doeberitz MV, Meuer SC, Moebius U (1998) Gene transfer of costimulatory molecules into a human colorectal cancer cell line: requirement of CD54, CD80 and class II MHC expression for enhanced immunogenicity. Immunology 93:390–397

    Article  CAS  PubMed  Google Scholar 

  37. Lustgarten J, Theobald M, Labadie C, LaFace D, Peterson P, Disis ML, Cheever MA, Sherman LA (1997) Identification of Her-2/neu CTL epitopes using double transgenic mice expressing HLA-A2.1 and human CD8. Hum Immunol 52:109–118

    Article  CAS  PubMed  Google Scholar 

  38. Meuer SC, Gückel B, Lindauer M, Rudy W, Moebius U (1998) Construction of immunogenic tumor cell surfaces by somatic gene transfer. Recent Results Cancer Res 144:78–85

    CAS  PubMed  Google Scholar 

  39. Meyer GC, Batrla R, Rudy W, Meuer SC, Wallwiener D, Gückel B, Moebius U (1999) Potential of CD80-transfected human breast carcinoma cells to induce peptide-specific T lymphocytes in an allogeneic human histocompatibility leukocyte antigens (HLA)-A2.1+-matched situation. Cancer Gene Ther 6:282–288

    Article  CAS  PubMed  Google Scholar 

  40. Osanto S, Schiphorst PP, Weijl NI, Dijkstra N, Van Wees A, Brouwenstein N, Vaessen N, Van Krieken JH, Hermans J, Cleton FJ, Schrier PI (2000) Vaccination of melanoma patients with an allogeneic, genetically modified interleukin 2-producing melanoma cell line. Hum Gene Ther 11:739–750

    Article  CAS  PubMed  Google Scholar 

  41. Pascolo S, Schirle M, Gückel B, Dumrese T, Stumm S, Kayser S, Moris A, Wallwiener D, Rammensee H-G, Stevanović S (2001) A MAGE-A1 HLA-A*0201 epitope identified by mass spectrometry. Cancer Res 61:4072–4077

    CAS  PubMed  Google Scholar 

  42. Plautz GE, Yang ZY, Wu BY, Gao X, Huang L, Nabel GJ (1993) Immunotherapy of malignancy by in vivo gene transfer into tumors. Proc Natl Acad Sci U S A 90:4645–4649

    CAS  PubMed  Google Scholar 

  43. Rammensee HG, Bachmann J, Emmerich NN, Bachor OA, Stevanovic S (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50:213–219. http://www.uni-tuebingen.de/uni/kxi/

    Article  CAS  PubMed  Google Scholar 

  44. Rentzsch C, Kayser S, Stumm S, Watermann I, Walter S, Stevanoviæ S, Wallwiener D, Gückel B (2003) Evaluation of pre-existent immunity in patients with primary breast cancer: molecular and cellular assays to quantify antigen-specific T lymphocytes in peripheral blood mononuclear cells. Clin Cancer Res 9:4376–4386

    CAS  PubMed  Google Scholar 

  45. Riker AI, Kammula US, Panelli MC, Wang E, Ohnmacht GA, Steinberg SM, Rosenberg SA, Marincola FM (2000) Threshold levels of gene expression of the melanoma antigen gp100 correlate with tumor cell recognition by cytotoxic T lymphocytes. Int J Cancer 86:818–826

    Article  CAS  PubMed  Google Scholar 

  46. Ruiz-Cabello F, Garrido F (1998) HLA and cancer: from research to clinical impact. Immunol Today 19:539–542

    Article  CAS  PubMed  Google Scholar 

  47. Salcedo M, Momburg F, Hämmerling GJ, Ljunggren HG (1994) Resistance to natural killer cell lysis conferred TAP1/2 genes in human antigen-processing mutant cells. J Immunol 152:1702–1708

    CAS  PubMed  Google Scholar 

  48. Scardino A, Alves P, Gross DA, Tourdot S, Graff-Dubois S, Angevin E, Firat H, Chouaib S, Lemonnier F, Nadler LM, Cardoso AA, Kosmatopoulos K (2001) Identification of HER-2/neu immunogenic epitopes presented by renal cell carcinoma and other human epithelial tumors. Eur J Immunol 31:3261–3270

    Article  CAS  PubMed  Google Scholar 

  49. Schendel DJ, Frankenberger B, Jantzer P, Cayeux S, Nobetaner E, Willimsky G, Maget B, Pohla H, Blankenstein T (2000) Expression of B7.1 (CD80) in a renal cell carcinoma line allows expansion of tumor-associated cytotoxic T lymphocytes in the presence of an alloresponse. Gene Ther 7:2007–2014

    Article  CAS  PubMed  Google Scholar 

  50. Schirle M, Keilholz W, Weber B, Gouttefangeas C, Dumrese T, Becker HD, Stevanovic S, Rammensee HG (2000) Identification of tumor-associated MHC class I ligands by a novel T cell-independent approach. Eur J Immunol 30:2216–2225

    CAS  PubMed  Google Scholar 

  51. Schmidt W, Buschle M, Zauner W, Kirlappos H, Mechtler K, Trska B, Birnstiel ML (1997) Cell-free tumor antigen peptide-based cancer vaccines. Proc Natl Acad Sci U S A 94:3262–3267

    Article  CAS  PubMed  Google Scholar 

  52. Stevens EJ, Jacknin L, Robbins PF, Kawakami Y, el Gamil M, Rosenberg SA, Yannelli JR (1995) Generation of tumor-specific CTLs from melanoma patients by using peripheral blood stimulated with allogeneic melanoma tumor cell lines: fine specificity and MART-1 melanoma antigen recognition. J Immunol 154:762–771

    CAS  PubMed  Google Scholar 

  53. Sundquist M, Thorstenson S, Brudin L, Wingren S, Nordenskjold B (2002) Incidence and prognosis in early onset breast cancer. Breast 11:30–35

    Article  CAS  PubMed  Google Scholar 

  54. Toes RE, Blom RJ, van der Voort E, Offringa R, Melief CJ, Kast WM (1996) Protective antitumor immunity induced by immunization with completely allogeneic tumor cells. Cancer Res 56:3782–3787

    CAS  PubMed  Google Scholar 

  55. Townsend SE, Allison JP (1993) Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. Science 259:368–370

    CAS  PubMed  Google Scholar 

  56. Wang YC, Zhu L, McHugh R, Graham SD Jr, Hillyer CD, Dillehay D, Sell KW, Selvaraj P (1996) Induction of autologous tumor-specific cytotoxic T-lymphocyte activity against a human renal carcinoma cell line by B7-1 (CD80) costimulation. J Immunother Emphasis Tumor Immunol 19:1–8

    PubMed  Google Scholar 

  57. Wiseman C, Jessup JM, Smith TL, Hersh E, Bowen J, Blumenshein G (1982) Inflammatory breast cancer treated with surgery, chemotherapy and allogeneic tumor cell/BCG immunotherapy. Cancer 49:1266–1271

    CAS  PubMed  Google Scholar 

  58. Zaks TZ, Rosenberg SA (1998) Immunization with a peptide epitope (p369–377) from HER-2/neu leads to peptide-specific cytotoxic T lymphocytes that fail to recognize HER-2/neu+ tumors. Cancer 58:4902–4908

    CAS  Google Scholar 

Download references

Acknowledgements

Parts of this research were supported by grants from the Angewandte Klinische Forschung (AKF)-programm of the Medizinische Fakultät, University of Tübingen, the Forschungskommission (FoKo) der Medizinische Fakultät, University of Heidelberg, and by the Bundesministerium für Bildung und Forschung (BMBF), Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte Gückel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gückel, B., Stumm, S., Rentzsch, C. et al. A CD80-transfected human breast cancer cell variant induces HER-2/neu–specific T cells in HLA-A*02–matched situations in vitro as well as in vivo. Cancer Immunol Immunother 54, 129–140 (2005). https://doi.org/10.1007/s00262-004-0583-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-004-0583-z

Keywords

Navigation