Skip to main content

Advertisement

Log in

Renal applications of dual-energy CT

Abdominal Radiology Aims and scope Submit manuscript

Abstract

Dual-energy CT is being increasingly used for abdominal imaging due to its incremental benefit of material characterization without significant increase in radiation dose. Knowledge of the different dual-energy CT acquisition techniques and image processing algorithms is essential to optimize imaging protocols and understand potential limitations while using dual-energy CT renal imaging such as urinary calculi characterization, assessment of renal masses and in CT urography. This review article provides an overview of the current dual-energy CT techniques and use of dual-energy CT in renal imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alvarez RE, Macovski A (1976) Energy-selective reconstructions in X-ray computerized tomography. Phys Med Biol 21(5):733–744

    Article  CAS  PubMed  Google Scholar 

  2. Hounsfield GN (1973) Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radiol 46(552):1016–1022

    Article  CAS  PubMed  Google Scholar 

  3. Kalender WA, Perman WH, Vetter JR, Klotz E (1986) Evaluation of a prototype dual-energy computed tomographic apparatus. I. Phantom studies. Med Phys 13(3):334–339

    Article  CAS  PubMed  Google Scholar 

  4. Johnson TR, Krauss B, Sedlmair M, et al. (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17(6):1510–1517

    Article  PubMed  Google Scholar 

  5. Silva AC, Morse BG, Hara AK, et al. (2011) Dual-energy (spectral) CT: applications in abdominal imaging. Radiographics 31(4):1031–1046; discussion 1047–1050

  6. Fletcher JG, Takahashi N, Hartman R, et al. (2009) Dual-energy and dual-source CT: is there a role in the abdomen and pelvis? Radiol Clin North Am 47(1):41–57

    Article  PubMed  Google Scholar 

  7. Kaza RK, Platt JF, Cohan RH, et al. (2012) Dual-energy CT with single- and dual-source scanners: current applications in evaluating the genitourinary tract. Radiographics 32(2):353–369

    Article  PubMed  Google Scholar 

  8. Vrtiska TJ, Takahashi N, Fletcher JG, et al. (2010) Genitourinary applications of dual-energy CT. AJR Am J Roentgenol 194(6):1434–1442

  9. Faby S, Kuchenbecker S, Sawall S, et al. (2015) Performance of today’s dual energy CT and future multi energy CT in virtual non-contrast imaging and in iodine quantification: a simulation study. Med Phys 42(7):4349–4366

    Article  PubMed  Google Scholar 

  10. McCollough CH, Leng S, Yu L, Fletcher JG (2015) Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 276(3):637–653

    Article  PubMed  PubMed Central  Google Scholar 

  11. Marin D, Boll DT, Mileto A, Nelson RC (2014) State of the art: dual-energy CT of the abdomen. Radiology 271(2):327–342

    Article  PubMed  Google Scholar 

  12. Karlo C, Lauber A, Gotti RP, et al. (2011) Dual-energy CT with tin filter technology for the discrimination of renal lesion proxies containing blood, protein, and contrast-agent. An experimental phantom study. Eur Radiol 21(2):385–392

    Article  PubMed  Google Scholar 

  13. Diekhoff T, Ziegeler K, Feist E, et al. (2015) First experience with single-source dual-energy computed tomography in six patients with acute arthralgia: a feasibility experiment using joint aspiration as a reference. Skeletal Radiol 44(11):1573–1577

    Article  PubMed  Google Scholar 

  14. Goodsitt MM, Christodoulou EG, Larson SC (2011) Accuracies of the synthesized monochromatic CT numbers and effective atomic numbers obtained with a rapid kVp switching dual energy CT scanner. Med Phys 38(4):2222–2232

    Article  PubMed  Google Scholar 

  15. Mendonca PR, Lamb P, Sahani DV (2014) A flexible method for multi-material decomposition of dual-energy CT images. IEEE Trans Med Imaging 33(1):99–116

    Article  PubMed  Google Scholar 

  16. Mileto A, Nelson RC, Samei E, et al. (2014) Impact of dual-energy multi-detector row CT with virtual monochromatic imaging on renal cyst pseudoenhancement: in vitro and in vivo study. Radiology 272(3):767–776

    Article  PubMed  Google Scholar 

  17. Albrecht MH, Scholtz JE, Husers K, et al. (2015) Advanced image-based virtual monoenergetic dual-energy CT angiography of the abdomen: optimization of kiloelectron volt settings to improve image contrast. Eur Radiol. doi:10.1007/s00330-015-3970-2

    Google Scholar 

  18. Mileto A, Barina A, Marin D, et al. (2015) Virtual monochromatic images from dual-energy multidetector CT: variance in CT numbers from the same lesion between single-source projection-based and dual-source image-based implementations. Radiology 150919

  19. Kambadakone AR, Eisner BH, Catalano OA, Sahani DV (2010) New and evolving concepts in the imaging and management of urolithiasis: urologists’ perspective. Radiographics 30(3):603–623

    Article  PubMed  Google Scholar 

  20. Bellin MF, Renard-Penna R, Conort P, et al. (2004) Helical CT evaluation of the chemical composition of urinary tract calculi with a discriminant analysis of CT-attenuation values and density. Eur Radiol 14(11):2134–2140

    Article  PubMed  Google Scholar 

  21. Motley G, Dalrymple N, Keesling C, Fischer J, Harmon W (2001) Hounsfield unit density in the determination of urinary stone composition. Urology 58(2):170–173

    Article  CAS  PubMed  Google Scholar 

  22. Wisenbaugh ES, Paden RG, Silva AC, Humphreys MR (2014) Dual-energy vs conventional computed tomography in determining stone composition. Urology 83(6):1243–1247

    Article  PubMed  Google Scholar 

  23. Hidas G, Eliahou R, Duvdevani M, et al. (2010) Determination of renal stone composition with dual-energy CT: in vivo analysis and comparison with X-ray diffraction. Radiology 257(2):394–401

    Article  PubMed  Google Scholar 

  24. Primak AN, Fletcher JG, Vrtiska TJ, et al. (2007) Noninvasive differentiation of uric acid versus non-uric acid kidney stones using dual-energy CT. Acad Radiol 14(12):1441–1447

    Article  PubMed  PubMed Central  Google Scholar 

  25. el Ibrahim SH, Cernigliaro JG, Pooley RA, Williams JC, Haley WE (2015) Motion artifacts in kidney stone imaging using single-source and dual-source dual-energy CT scanners: a phantom study. Abdom Imaging 40(8):3161–3167

    Article  Google Scholar 

  26. Leng S, Shiung M, Ai S, et al. (2015) Feasibility of discriminating uric acid from non-uric acid renal stones using consecutive spatially registered low- and high-energy scans obtained on a conventional CT scanner. AJR Am J Roentgenol 204(1):92–97

    Article  PubMed  PubMed Central  Google Scholar 

  27. Stolzmann P, Kozomara M, Chuck N, et al. (2010) In vivo identification of uric acid stones with dual-energy CT: diagnostic performance evaluation in patients. Abdom Imaging 35(5):629–635

    Article  PubMed  Google Scholar 

  28. Li X, Zhao R, Liu B, Yu Y (2013) Gemstone spectral imaging dual-energy computed tomography: a novel technique to determine urinary stone composition. Urology 81(4):727–730

    Article  PubMed  Google Scholar 

  29. Manglaviti G, Tresoldi S, Guerrer CS, et al. (2011) In vivo evaluation of the chemical composition of urinary stones using dual-energy CT. AJR Am J Roentgenol 197(1):W76–W83

    Article  PubMed  Google Scholar 

  30. Jepperson MA, Cernigliaro JG, Sella D, et al. (2013) Dual-energy CT for the evaluation of urinary calculi: image interpretation, pitfalls and stone mimics. Clin Radiol 68(12):e707–e714

    Article  CAS  PubMed  Google Scholar 

  31. Israel GM, Bosniak MA (2005) How I do it: evaluating renal masses. Radiology 236(2):441–450

    Article  PubMed  Google Scholar 

  32. Graser A, Becker CR, Staehler M, et al. (2010) Single-phase dual-energy CT allows for characterization of renal masses as benign or malignant. Invest Radiol 45(7):399–405

  33. Graser A, Johnson TR, Hecht EM, et al. (2009) Dual-energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images? Radiology 252(2):433–440

    Article  PubMed  Google Scholar 

  34. Neville AM, Gupta RT, Miller CM, et al. (2011) Detection of renal lesion enhancement with dual-energy multidetector CT. Radiology 259(1):173–183

    Article  PubMed  Google Scholar 

  35. Kaza RK, Caoili EM, Cohan RH, Platt JF (2011) Distinguishing enhancing from nonenhancing renal lesions with fast kilovoltage-switching dual-energy CT. AJR Am J Roentgenol 197(6):1375–1381

    Article  PubMed  Google Scholar 

  36. Mileto A, Marin D, Ramirez-Giraldo JC, et al. (2014) Accuracy of contrast-enhanced dual-energy MDCT for the assessment of iodine uptake in renal lesions. AJR Am J Roentgenol 202(5):W466–W474

    Article  PubMed  Google Scholar 

  37. Ascenti G, Mazziotti S, Mileto A, et al. (2012) Dual-source dual-energy CT evaluation of complex cystic renal masses. Am J Roentgenol 199(5):1026–1034

    Article  Google Scholar 

  38. Park SY, Kim CK, Park BK (2014) Dual-energy CT in assessing therapeutic response to radiofrequency ablation of renal cell carcinomas. Eur J Radiol 83(2):e73–e79

    Article  PubMed  Google Scholar 

  39. Miller CM, Gupta RT, Paulson EK, et al. (2011) Effect of organ enhancement and habitus on estimation of unenhanced attenuation at contrast-enhanced dual-energy MDCT: concepts for individualized and organ-specific spectral iodine subtraction strategies. AJR Am J Roentgenol 196(5):W558–W564

    Article  PubMed  Google Scholar 

  40. Kaufmann S, Sauter A, Spira D, et al. (2013) Tin-filter enhanced dual-energy-CT: image quality and accuracy of CT numbers in virtual noncontrast imaging. Acad Radiol 20(5):596–603

    Article  PubMed  Google Scholar 

  41. Sahni VA, Shinagare AB, Silverman SG (2013) Virtual unenhanced CT images acquired from dual-energy CT urography: accuracy of attenuation values and variation with contrast material phase. Clin Radiol 68(3):264–271

    Article  CAS  PubMed  Google Scholar 

  42. Mileto A, Marin D, Alfaro-Cordoba M, et al. (2014) Iodine quantification to distinguish clear cell from papillary renal cell carcinoma at dual-energy multidetector CT: a multireader diagnostic performance study. Radiology 273(3):813–820

    Article  PubMed  Google Scholar 

  43. Mileto A, Nelson RC, Paulson EK, Marin D (2015) Dual-energy MDCT for imaging the renal mass. Am J Roentgenol 204(6):W640–W647

    Article  Google Scholar 

  44. Caoili EM, Inampudi P, Cohan RH, Ellis JH (2005) Optimization of multi-detector row CT urography: effect of compression, saline administration, and prolongation of acquisition delay. Radiology 235(1):116–123

    Article  PubMed  Google Scholar 

  45. Chen C-Y, Tsai T-H, Jaw T-S, et al. (2016) Diagnostic performance of split-bolus portal venous phase dual-energy CT urography in patients with hematuria. Am J Roentgenol 2:1–10.

  46. Moon JW, Park BK, Kim CK, Park SY (2011) Evaluation of virtual unenhanced CT obtained from dual-energy CT urography for detecting urinary stones. Br J Radiol 85(1014):e176–e181

    Article  Google Scholar 

  47. Takahashi N, Hartman RP, Vrtiska TJ, et al. (2008) Dual-energy CT iodine-subtraction virtual unenhanced technique to detect urinary stones in an iodine-filled collecting system: a phantom study. AJR Am J Roentgenol 190(5):1169–1173

    Article  PubMed  PubMed Central  Google Scholar 

  48. Takahashi N, Vrtiska TJ, Kawashima A, et al. (2010) Detectability of urinary stones on virtual nonenhanced images generated at pyelographic-phase dual-energy CT. Radiology 256(1):184–190

  49. Chen CY, Hsu JS, Jaw TS, et al. (2015) Split-bolus portal venous phase dual-energy CT urography: protocol design, image quality, and dose reduction. AJR Am J Roentgenol 205(5):W492–W501

    Article  PubMed  Google Scholar 

  50. Mangold S, Thomas C, Fenchel M, et al. (2012) Virtual nonenhanced dual-energy CT urography with tin-filter technology: determinants of detection of urinary calculi in the renal collecting system. Radiology 264(1):119–125

    Article  PubMed  Google Scholar 

  51. Ascenti G, Mileto A, Gaeta M, et al. (2013) Single-phase dual-energy CT urography in the evaluation of haematuria. Clin Radiol 68(2):e87–e94

    Article  CAS  PubMed  Google Scholar 

  52. Kaza RK, Platt JF, Megibow AJ (2013) Dual-energy CT of the urinary tract. Abdom Imaging 38(1):167–179

    Article  PubMed  Google Scholar 

  53. Wang J, Qu M, Duan X, et al. (2012) Characterisation of urinary stones in the presence of iodinated contrast medium using dual-energy CT: a phantom study. Eur Radiol 22(12):2589–2596

    Article  PubMed  PubMed Central  Google Scholar 

  54. Matsumoto K, Jinzaki M, Tanami Y, et al. (2011) Virtual monochromatic spectral imaging with fast kilovoltage switching: improved image quality as compared with that obtained with conventional 120-kVp CT. Radiology 259(1):257–262

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi K. Kaza.

Ethics declarations

Conflict of Interest

The authors have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaza, R.K., Platt, J.F. Renal applications of dual-energy CT. Abdom Radiol 41, 1122–1132 (2016). https://doi.org/10.1007/s00261-016-0708-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-016-0708-9

Keywords

Navigation