Skip to main content

Advertisement

Log in

Quantitative T2* magnetic resonance imaging for renal iron overload assessment: normal values by age and sex

  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

Purpose

Few studies of renal iron content have been performed with multiecho gradient-echo (ME–GRE) T2* magnetic resonance imaging (MRI). We assessed the feasibility and reproducibility of ME–GRE T2* MRI for measuring regional and global renal T2* values, and established the lower limits of normal in healthy subjects, also correlating the measured values with age and sex.

Methods

Twenty consecutive healthy subjects (13 men and 7 women, mean age 29.1 ± 7.2 years, range 19–42 years) underwent MRI examinations using a 1.5 T magnet and an ME–GRE T2* sequence. For each kidney, T2* was measured in anterior, posterolateral, and posteromedial renal parenchymal regions. The mean T2* value was calculated as the average of the two kidneys T2* values.

Results

For the mean kidney T2* value, the coefficients of variation for intra- and inter-operator reproducibility were 1.76% and 6.23%, respectively. The lower limit of normal for the mean kidney T2* value was 31 ms (median 51.39 ± 10.09). There was no significant difference between left and right kidney T2* values (p = 0.578). No significant correlation was found between T2* values and subjects’ age or sex.

Conclusions

Renal ME-GRE T2* appears to be a feasible and reproducible technique. The renal T2* values showed no dependence on sex or age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anderson GJ (2007) Mechanisms of iron loading and toxicity. Am J Hematol 82:1128–1131

    Article  CAS  PubMed  Google Scholar 

  2. Maggio A, Capra M, Pepe A, et al. (2008) A critical review of non invasive procedures for the evaluation of body iron burden in thalassemia major patients. Pediatr Endocrinol Rev 6(Suppl 1):193–203

    PubMed  Google Scholar 

  3. Hentze MW, Muckenthaler MU, Andrews NC (2004) Balancing acts: molecular control of mammalian iron metabolism. Cell 117:285–297

    Article  CAS  PubMed  Google Scholar 

  4. Price L, Kowdley KV (2009) The role of iron in the pathophysiology and treatment of chronic hepatitis C. Can J Gastroenterol 23:822–828

    PubMed Central  PubMed  Google Scholar 

  5. Papakonstantinou O, Alexopoulou E, Economopoulos N, et al. (2009) Assessment of iron distribution between liver, spleen, pancreas, bone marrow, and myocardium by means of R2 relaxometry with MRI in patients with beta-thalassemia major. J Magn Reson Imaging 29:853–859

    Article  PubMed  Google Scholar 

  6. Noetzli LJ, Papudesi J, Coates TD, Wood JC (2009) Pancreatic iron loading predicts cardiac iron loading in thalassemia major. Blood 114:4021–4026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Relia N, Kaushik C (2010) Renal hemosiderosis: a case of black kidneys causing renal failure. J Postgrad Med 56:216–217

    Article  CAS  PubMed  Google Scholar 

  8. Bhandari S, Galanello R (2012) Renal aspects of thalassaemia a changing paradigm. Eur J Haematol 89:187–197

    Article  CAS  PubMed  Google Scholar 

  9. Mastrangelo F, Lopez T, Rizzelli S, et al. (1975) Function of the kidney in adult patients with Cooley’s disease. A preliminary report. Nephron 14:229–236

    Article  CAS  PubMed  Google Scholar 

  10. Landing BH, Gonick HC, Nadorra RL, et al. (1989) Renal lesions and clinical findings in thalassemia major and other chronic anemias with hemosiderosis. Pediatr Pathol 9:479–500

    Article  CAS  PubMed  Google Scholar 

  11. Bhandari S, Daar S (2012) Deferasirox and renal dysfunction in children. Pediatr Nephrol 27:2159

    Article  PubMed  Google Scholar 

  12. Brittenham GM, Badman DG, National Instituteof Diabetes and Digestive and Kidney Diseases (NIDDK) Workshop (2003) Noninvasive measurement of iron: report of an NIDDK workshop. Blood 101:15–19

    Article  CAS  PubMed  Google Scholar 

  13. Anderson LJ, Holden S, Davis B, et al. (2001) Cardiovascular T2-Star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J 22:2171–2179

    Article  CAS  PubMed  Google Scholar 

  14. Carpenter J-P, He T, Kirk P, et al. (2011) On T2* magnetic resonance and cardiac iron. Circulation 123:1519–1528

    Article  PubMed Central  PubMed  Google Scholar 

  15. Ramazzotti A, Pepe A, Positano V, et al. (2009) Multicenter validation of the magnetic resonance T2* technique for segmental and global quantification of myocardial iron. J Magn Reson Imaging 30:62–68

    Article  PubMed  Google Scholar 

  16. Au W-Y, Lam WW-M, Chu W, et al. (2008) A T2* magnetic resonance imaging study of pancreatic iron overload in thalassemia major. Haematologica 93:116–119

    Article  PubMed  Google Scholar 

  17. Restaino G, Meloni A, Positano V, et al. (2011) Regional and global pancreatic T2* MRI for iron overload assessment in a large cohort of healthy subjects: normal values and correlation with age and gender. Magn Reson Med 65:764–769

    Article  PubMed  Google Scholar 

  18. Schein A, Enriquez C, Coates TD, Wood JC (2008) Magnetic resonance detection of kidney iron deposition in sickle cell disease: a marker of chronic hemolysis. J Magn Reson Imaging 28:698–704

    Article  PubMed Central  PubMed  Google Scholar 

  19. Hashemieh M, Azarkeivan A, Akhlaghpoor S, et al. (2012) T2-star (T2*) magnetic resonance imaging for assessment of kidney iron overload in thalassemic patients. Arch Iran Med 15:91–94

    PubMed  Google Scholar 

  20. Levey AS, Stevens LA, Schmid CH, et al. (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612

    Article  PubMed Central  PubMed  Google Scholar 

  21. Positano V, Salani B, Pepe A, et al. (2009) Improved T2* assessment in liver iron overload by magnetic resonance imaging. Magn Reson Imaging 27:188–197

    Article  PubMed  Google Scholar 

  22. Wood JC (2007) Magnetic resonance imaging measurement of iron overload. Curr Opin Hematol 14:183–190

    Article  PubMed Central  PubMed  Google Scholar 

  23. Rossi C, Boss A, Haap M, et al. (2009) Whole-body T2* mapping at 1.5 T. Magn Reson Imaging 27:489–496

    Article  PubMed  Google Scholar 

  24. Prasad PV, Edelman RR, Epstein FH (1996) Noninvasive evaluation of intrarenal oxygenation with BOLD MRI. Circulation 94:3271–3275

    Article  CAS  PubMed  Google Scholar 

  25. Simon-Zoula SC, Hofmann L, Giger A, et al. (2006) Non-invasive monitoring of renal oxygenation using BOLD-MRI: a reproducibility study. NMR Biomed 19:84–89

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all the healthy subjects for their cooperation. We also thank Claudia Santarlasci for her skillful secretarial work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessia Pepe.

Additional information

Emanuele Grassedonio and Antonella Meloni have contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grassedonio, E., Meloni, A., Positano, V. et al. Quantitative T2* magnetic resonance imaging for renal iron overload assessment: normal values by age and sex. Abdom Imaging 40, 1700–1704 (2015). https://doi.org/10.1007/s00261-015-0395-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-015-0395-y

Keywords

Navigation