Skip to main content
Log in

Prediction of myocardial blood flow under stress conditions by means of a computational model

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Quantification of myocardial blood flow (MBF) and functional assessment of coronary artery disease (CAD) can be achieved through stress myocardial computed tomography perfusion (stress-CTP). This requires an additional scan after the resting coronary computed tomography angiography (cCTA) and administration of an intravenous stressor. This complex protocol has limited reproducibility and non-negligible side effects for the patient. We aim to mitigate these drawbacks by proposing a computational model able to reproduce MBF maps.

Methods

A computational perfusion model was used to reproduce MBF maps. The model parameters were estimated by using information from cCTA and MBF measured from stress-CTP (MBFCTP) maps. The relative error between the computational MBF under stress conditions (MBFCOMP) and MBFCTP was evaluated to assess the accuracy of the proposed computational model.

Results

Applying our method to 9 patients (4 control subjects without ischemia vs 5 patients with myocardial ischemia), we found an excellent agreement between the values of MBFCOMP and MBFCTP. In all patients, the relative error was below 8% over all the myocardium, with an average-in-space value below 4%.

Conclusion

The results of this pilot work demonstrate the accuracy and reliability of the proposed computational model in reproducing MBF under stress conditions. This consistency test is a preliminary step in the framework of a more ambitious project which is currently under investigation, i.e., the construction of a computational tool able to predict MBF avoiding the stress protocol and potential side effects while reducing radiation exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pontone G, Andreini D, Guaricci AI, Baggiano A, Fazzari F, Guglielmo M, et al. Incremental diagnostic value of stress computed tomography myocardial perfusion with whole-heart coverage CT scanner in intermediate- to high-risk symptomatic patients suspected of coronary artery disease. JACC Cardiovasc Imaging. 2019;12:338–49. https://doi.org/10.1016/j.jcmg.2017.10.025.

    Article  PubMed  Google Scholar 

  2. Pontone G, Andreini D, Guaricci AI, Guglielmo M, Baggiano A, Muscogiuri G, et al. Quantitative vs. qualitative evaluation of static stress computed tomography perfusion to detect haemodynamically significant coronary artery disease. Eur Heart J Cardiovasc Imaging 2018;19:1244–52. doi: https://doi.org/10.1093/ehjci/jey111

  3. Pontone G, Baggiano A, Andreini D, Guaricci AI, Guglielmo M, Muscogiuri G, et al. Diagnostic accuracy of simultaneous evaluation of coronary arteries and myocardial perfusion with single stress cardiac computed tomography acquisition compared to invasive coronary angiography plus invasive fractional flow reserve. Int J Cardiol. 2018;273:263–8. https://doi.org/10.1016/j.ijcard.2018.09.065.

    Article  PubMed  Google Scholar 

  4. Pontone G, Baggiano A, Andreini D, Guaricci AI, Guglielmo M, Muscogiuri G, et al. Stress computed tomography perfusion versus fractional flow reserve CT derived in suspected coronary artery disease: The PERFECTION Study. JACC Cardiovasc Imaging. 2019;12:1487–97. https://doi.org/10.1016/j.jcmg.2018.08.023.

    Article  PubMed  Google Scholar 

  5. Pontone G, Baggiano A, Andreini D, Guaricci AI, Guglielmo M, Muscogiuri G, et al. Dynamic stress computed tomography perfusion with a whole-heart coverage scanner in addition to coronary computed tomography angiography and fractional flow reserve computed tomography derived. JACC Cardiovasc Imaging. 2019;12:2460–71. https://doi.org/10.1016/j.jcmg.2019.02.015.

    Article  PubMed  Google Scholar 

  6. Baggiano A, Fusini L, Del Torto A, Vivona P, Guglielmo M, Muscogiuri G, et al. Sequential strategy including FFRCT plus stress-CTP impacts on management of patients with stable chest pain: the Stress-CTP RIPCORD Study. J Clin Med. 2020;9:2147. https://doi.org/10.3390/jcm9072147.

    Article  PubMed Central  Google Scholar 

  7. Alves JR, de Queiroz RAB, Bär M, dos Santos RW. Simulation of the perfusion of contrast agent used in cardiac magnetic resonance: a step toward non-invasive cardiac perfusion quantification. Front Physiol. 2019;10:177. https://doi.org/10.3389/fphys.2019.00177.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chapelle D, Gerbeau J-F, Sainte-Marie J, Vignon-Clementel IE. A poroelastic model valid in large strains with applications to perfusion in cardiac modeling. Comput Mech. 2009;46(1):91–101. https://doi.org/10.1007/s00466-009-0452-x.

    Article  Google Scholar 

  9. Di Gregorio S, Fedele M, Pontone G, Corno AF, Zunino P, Vergara C, et al. A computational model applied to myocardial perfusion in the human heart: from large coronaries to microvasculature. J Comput Phys. 2021;424:109836. https://doi.org/10.1016/j.jcp.2020.109836.

    Article  Google Scholar 

  10. Lee J, Cookson A, Chabiniok R, Rivolo S, Hyde E, Sinclair M, et al. Multiscale modelling of cardiac perfusion. In: Quarteroni A (eds) Modeling the heart and the circulatory system. MS&A, 2015;14:51–96.

  11. Namani R, Lee LC, Lanir Y, Kaimovitz B, Shavik SM, Kassab GS. Effects of myocardial function and systemic circulation on regional coronary perfusion. J Appl Physiol. 2020;128:1106–22. https://doi.org/10.1152/japplphysiol.00450.2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Papamanolis L, Kim HJ, Jaquet C, Sinclair M, Schaap M, Danad I, et al. Myocardial perfusion simulation for coronary artery disease: a coupled patient-specific multiscale model. Ann Biomed Eng. 2021;49:1432–47. https://doi.org/10.1007/s10439-020-02681-z.

    Article  PubMed  Google Scholar 

  13. So A, Hsieh J, Li YY, Hadway J, Kong HF, Lee TY. Quantitative myocardial perfusion measurement using CT perfusion: a validation study in a porcine model of reperfused acute myocardial infarction. Int J Cardiovasc Imaging. 2012;28:1237–48. https://doi.org/10.1007/s10554-011-9927-x.

    Article  PubMed  Google Scholar 

  14. Antiga L, Piccinelli M, Botti L, Ene-Iordache B, Remuzzi A, Steinman DA. An image-based modeling framework for patient-specific computational hemodynamics. Med Biol Eng Comput. 2008;46:1097–112. https://doi.org/10.1007/s11517-008-0420-1.

    Article  PubMed  Google Scholar 

  15. Fedele M. and Quarteroni A. Polygonal surface processing and mesh generation tools for the numerical simulation of the cardiac function. Int J Numer Meth Biomed Engng 2021;e3435. doi: https://doi.org/10.1002/cnm.3435

  16. Michler C, Cookson AN, Chabiniok R, Hyde E, Lee J, Sinclair M, et al. A computationally efficient framework for the simulation of cardiac perfusion using a multi-compartment Darcy porous-media flow model. Int J Numer Method Biomed Eng. 2013;29:217–32. https://doi.org/10.1002/cnm.2520.

    Article  CAS  PubMed  Google Scholar 

  17. Hyde ER, Cookson AN, Lee J, Michler C, Goyal A, Sochi T, et al. Multi-scale parameterisation of a myocardial perfusion model using whole-organ arterial networks. Ann Biomed Eng. 2014;42:797–811. https://doi.org/10.1007/s10439-013-0951-y.

    Article  PubMed  Google Scholar 

  18. Ponzini R, Vergara C, Redaelli A, Veneziani A. Reliable CFD-based estimation of flow rate in haemodynamics measures. Ultrasound Med Biol. 2006;32:1545–55. https://doi.org/10.1016/j.ultrasmedbio.2006.05.022.

    Article  PubMed  Google Scholar 

  19. Tezduyar T, Sathe S. Stabilization parameters in SUPG and PSPG formulations. J Comput Appl Mech. 2003;4:71–88.

    Google Scholar 

  20. Arndt D, Bangerth W, Clevenger TC, Davydov V, Fehling M, Garcia-Sanchez D, et al. The deal.II library, Version 9.1. J Numer Math 2019;27:203–13. doi: https://doi.org/10.1515/jnma-2019-0064

  21. Zhang C, A Rogers P, Merkus D, Muller-Delp JM, Tiefenbacher CP, Potter B, et al. Regulation of coronary microvascular resistance in health and disease. In: Tuma RF, Durán WN, Ley K (eds) Microcirculation 2008;521–49.

  22. Kaimovitz B, Lanir Y, Kassab GS. Large-scale 3-D geometric reconstruction of the porcine coronary arterial vasculature based on detailed anatomical data. Ann Biomed Eng. 2005;33:1517–35. https://doi.org/10.1007/s10439-005-7544-3.

    Article  PubMed  Google Scholar 

  23. SCOT-HEART Investigators, Newby DE, Adamson PD, Berry C, Boon NA, Dweck MR, et al. Coronary CT angiography and 5-year risk of myocardial infarction. N Engl J Med 2018;379:924–33. doi: https://doi.org/10.1056/NEJMoa1805971

  24. Timmis A, Roobottom CA. National Institute for Health and Care Excellence updates the stable chest pain guideline with radical changes to the diagnostic paradigm. Heart. 2017;103:982–6. https://doi.org/10.1136/heartjnl-2015-308341.

    Article  PubMed  Google Scholar 

  25. Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41:407–77.

    Article  PubMed  Google Scholar 

  26. Pontone G, Bertella E, Mushtaq S, Loguercio M, Cortinovis S, Baggiano A, et al. Coronary artery disease: diagnostic accuracy of CT coronary angiography- - a comparison of high and standard spatial resolution scanning. Radiology. 2014;271:688–94. https://doi.org/10.1148/radiol.13130909.

    Article  PubMed  Google Scholar 

  27. Nørgaard BL, Leipsic J, Gaur S, Seneviratne S, Ko BS, Ito H, et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease. J Am Coll Cardiol. 2014;63:1145–55. https://doi.org/10.1016/j.jacc.2013.11.043.

    Article  PubMed  Google Scholar 

  28. Hlatky MA, De Bruyne B, Pontone G, Patel M, Norgaard BL, Byrne RA, et al. Quality-of-life and economic outcomes of assessing fractional flow reserve with computed tomography angiography: PLATFORM. J Am Coll Cardiol. 2015;66:2315–23. https://doi.org/10.1016/j.jacc.2015.09.051.

    Article  PubMed  Google Scholar 

  29. Fairbairn TA, Nieman K, Akasaka T, Norgaard BL, Berman DS, Raff G, et al. Real-world clinical utility and impact on clinical decision-making of coronary computed tomography angiography-derived fractional flow reserve: lessons from the ADVANCE Registry. Eur Heart J. 2018;39:3701–11. https://doi.org/10.1093/eurheartj/ehy530.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Simone Di Gregorio, Christian Vergara, Gianluca Pontone

Methodology: Simone Di Gregorio, Christian Vergara, Paolo Zunino, Giovanni Montino Pelagi

Formal analysis and investigation: Simone Di Gregorio, Giovanni Montino Pelagi

Writing—original draft preparation: Simone Di Gregorio, Christian Vergara

Writing—review and editing: Simone Di Gregorio, Christian Vergara, Andrea Baggiano, Marco Guglielmo, Laura Fusini, Giuseppe Muscogiuri, Alexia Rossi, Mark G Rabbat, Paolo Zunino, Alfio Quarteroni, Gianluca Pontone

Supervision: Gianluca Pontone, Alfio Quarteroni, Christian Vergara

Corresponding author

Correspondence to Gianluca Pontone.

Ethics declarations

Ethical approval

Ethical Review Board approval was obtained (R250/15-CCM 262). All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Conflict of interest

Pontone G. declared institutional research grant and/or honorarium as speaker from General Electric, Bracco, Heartflow, Boehringer Ingelheim.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Gregorio, S., Vergara, C., Pelagi, G.M. et al. Prediction of myocardial blood flow under stress conditions by means of a computational model. Eur J Nucl Med Mol Imaging 49, 1894–1905 (2022). https://doi.org/10.1007/s00259-021-05667-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-021-05667-8

Keywords

Navigation