Skip to main content
Log in

Attenuated right ventricular energetics evaluated using 11C-acetate PET in patients with pulmonary hypertension

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The right ventricle (RV) has a high capacity to adapt to pressure or volume overload before failing. However, the mechanisms of RV adaptation, in particular RV energetics, in patients with pulmonary hypertension (PH) are still not well understood. We aimed to evaluate RV energetics including RV oxidative metabolism, power and efficiency to adapt to increasing pressure overload in patients with PH using 11C-acetate PET.

Methods

In this prospective study, 27 patients with WHO functional class II/III PH (mean pulmonary arterial pressure 39.8 ± 13.5 mmHg) and 9 healthy individuals underwent 11C-acetate PET. 11C-acetate PET was used to simultaneously measure oxidative metabolism (k mono) for the left ventricle (LV) and RV. LV and RV efficiency were also calculated.

Results

The RV ejection fraction in PH patients was lower than in controls (p = 0.0054). There was no statistically significant difference in LV k mono (p = 0.09). In contrast, PH patients showed higher RV k mono than did controls (0.050 ± 0.009 min−1 vs. 0.030 ± 0.006 min−1, p < 0.0001). PH patients exhibited significantly increased RV power (p < 0.001) and hence increased RV efficiency compared to controls (0.40 ± 0.14 vs. 0.017 ± 0.12 mmHg·mL·min/g, p = 0.001).

Conclusion

The RV oxidative metabolic rate was increased in patients with PH. Patients with WHO functional class II/III PH also had increased RV power and efficiency. These findings may indicate a myocardial energetics adaptation response to increasing pulmonary arterial pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chin KM, Rubin LJ. Pulmonary arterial hypertension. J Am Coll Cardiol. 2008;51:1527–38.

    Article  PubMed  Google Scholar 

  2. Haddad F, Doyle R, Murphy DJ, Hunt SA. Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation. 2008;117:1717–31.

    Article  PubMed  Google Scholar 

  3. Chin KM, Kim NH, Rubin LJ. The right ventricle in pulmonary hypertension. Coron Artery Dis. 2005;16:13–8.

    Article  PubMed  Google Scholar 

  4. Archer SL, Weir EK, Wilkins MR. Basic science of pulmonary arterial hypertension for clinicians: new concepts and experimental therapies. Circulation. 2010;121:2045–66.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Zong P, Tune JD, Downey HF. Mechanisms of oxygen demand/supply balance in the right ventricle. Exp Biol Med (Maywood). 2005;230:507–19.

    CAS  Google Scholar 

  6. Wong YY, Westerhof N, Ruiter G, Lubberink M, Raijmakers P, Knaapen P, et al. Systolic pulmonary artery pressure and heart rate are main determinants of oxygen consumption in the right ventricular myocardium of patients with idiopathic pulmonary arterial hypertension. Eur J Heart Fail. 2011;13:1290–5.

    Article  CAS  PubMed  Google Scholar 

  7. Gomez A, Bialostozky D, Zajarias A, Santos E, Palomar A, Martinez ML, et al. Right ventricular ischemia in patients with primary pulmonary hypertension. J Am Coll Cardiol. 2001;38:1137–42.

    Article  CAS  PubMed  Google Scholar 

  8. Wong YY, Ruiter G, Lubberink M, Raijmakers PG, Knaapen P, Marcus JT, et al. Right ventricular failure in idiopathic pulmonary arterial hypertension is associated with inefficient myocardial oxygen utilization. Circ Heart Fail. 2011;4:700–6.

    Article  CAS  PubMed  Google Scholar 

  9. Ukkonen H, Beanlands R. Oxidative metabolism and cardiac efficiency. In: Wahl R, editor. Principles and practice of PET and PET/CT. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2009. p. 589–606.

    Google Scholar 

  10. Knaapen P, Germans T, Knuuti J, Paulus WJ, Dijkmans PA, Allaart CP, et al. Myocardial energetics and efficiency: current status of the noninvasive approach. Circulation. 2007;115:918–27.

    Article  PubMed  Google Scholar 

  11. Armbrecht JJ, Buxton DB, Brunken RC, Phelps ME, Schelbert HR. Regional myocardial oxygen consumption determined noninvasively in humans with [1-11C]acetate and dynamic positron tomography. Circulation. 1989;80:863–72.

    Article  CAS  PubMed  Google Scholar 

  12. Beanlands RS, Nahmias C, Gordon E, Coates G, deKemp R, Firnau G, et al. The effects of beta(1)-blockade on oxidative metabolism and the metabolic cost of ventricular work in patients with left ventricular dysfunction: a double-blind, placebo-controlled, positron-emission tomography study. Circulation. 2000;102:2070–5.

    Article  CAS  PubMed  Google Scholar 

  13. Stolen KQ, Kemppainen J, Ukkonen H, Kalliokoski KK, Luotolahti M, Lehikoinen P, et al. Exercise training improves biventricular oxidative metabolism and left ventricular efficiency in patients with dilated cardiomyopathy. J Am Coll Cardiol. 2003;41:460–7.

    Article  CAS  PubMed  Google Scholar 

  14. Ukkonen H, Saraste M, Akkila J, Knuuti J, Karanko M, Iida H, et al. Myocardial efficiency during levosimendan infusion in congestive heart failure. Clin Pharmacol Ther. 2000;68:522–31.

    Article  CAS  PubMed  Google Scholar 

  15. Wong YY, Raijmakers P, van Campen J, van der Laarse WJ, Knaapen P, Lubberink M, et al. 11C-Acetate clearance as an index of oxygen consumption of the right myocardium in idiopathic pulmonary arterial hypertension: a validation study using 15O-labeled tracers and PET. J Nucl Med. 2013;54:1258–62.

    Article  CAS  PubMed  Google Scholar 

  16. Ukkonen H, Beanlands RS, Burwash IG, de Kemp RA, Nahmias C, Fallen E, et al. Effect of cardiac resynchronization on myocardial efficiency and regional oxidative metabolism. Circulation. 2003;107:28–31.

    Article  CAS  PubMed  Google Scholar 

  17. Tamaki N, Magata Y, Takahashi N, Kawamoto M, Torizuka T, Yonekura Y, et al. Oxidative metabolism in the myocardium in normal subjects during dobutamine infusion. Eur J Nucl Med. 1993;20:231–7.

    Article  CAS  PubMed  Google Scholar 

  18. Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2013;62:D34–41.

    Article  PubMed  Google Scholar 

  19. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166:111–7.

    Article  Google Scholar 

  20. Nagaya N, Nishikimi T, Uematsu M, Satoh T, Kyotani S, Sakamaki F, et al. Plasma brain natriuretic peptide as a prognostic indicator in patients with primary pulmonary hypertension. Circulation. 2000;102:865–70.

    Article  CAS  PubMed  Google Scholar 

  21. Pullamsetti SS, Savai R, Schaefer MB, Wilhelm J, Ghofrani HA, Weissmann N, et al. cAMP phosphodiesterase inhibitors increases nitric oxide production by modulating dimethylarginine dimethylaminohydrolases. Circulation. 2011;123:1194–204.

    Article  CAS  PubMed  Google Scholar 

  22. Alfakih K, Plein S, Bloomer T, Jones T, Ridgway J, Sivananthan M. Comparison of right ventricular volume measurements between axial and short axis orientation using steady-state free precession magnetic resonance imaging. J Magn Reson Imaging. 2003;18:25–32.

    Article  PubMed  Google Scholar 

  23. Oyama-Manabe N, Sato T, Tsujino I, Kudo K, Manabe O, Kato F, et al. The strain-encoded (SENC) MR imaging for detection of global right ventricular dysfunction in pulmonary hypertension. Int J Cardiovasc Imaging. 2013;29:371–8.

    Article  PubMed  Google Scholar 

  24. Yoshinaga K, Katoh C, Beanlands RS, Noriyasu K, Komuro K, Yamada S, et al. Reduced oxidative metabolic response in dysfunctional myocardium with preserved glucose metabolism but with impaired contractile reserve. J Nucl Med. 2004;45:1885–91.

    CAS  PubMed  Google Scholar 

  25. Yoshinaga K, Burwash IG, Leech JA, Haddad H, Johnson CB, deKemp RA, et al. The effects of continuous positive airway pressure on myocardial energetics in patients with heart failure and obstructive sleep apnea. J Am Coll Cardiol. 2007;49:450–8.

    Article  PubMed  Google Scholar 

  26. Sun KT, Yeatman LA, Buxton DB, Chen K, Johnson JA, Huang SC, et al. Simultaneous measurement of myocardial oxygen consumption and blood flow using [1-carbon-11]acetate. J Nucl Med. 1998;39:272–80.

    CAS  PubMed  Google Scholar 

  27. Davidson Jr WR, Fee EC. Influence of aging on pulmonary hemodynamics in a population free of coronary artery disease. Am J Cardiol. 1990;65:1454–8.

    Article  PubMed  Google Scholar 

  28. Braunwald E. Control of myocardial oxygen consumption: physiologic and clinical considerations. Am J Cardiol. 1971;27:416–32.

    Article  CAS  PubMed  Google Scholar 

  29. Laine H, Katoh C, Luotolahti M, Yki-Jarvinen H, Kantola I, Jula A, et al. Myocardial oxygen consumption is unchanged but efficiency is reduced in patients with essential hypertension and left ventricular hypertrophy. Circulation. 1999;100:2425–30.

    Article  CAS  PubMed  Google Scholar 

  30. Katz AM. Potential deleterious effects of inotropic agents in the therapy of chronic heart failure. Circulation. 1986;73:III184–90.

    CAS  PubMed  Google Scholar 

  31. Ukkonen H, Burwash IG, Dafoe W, de Kemp RA, Haddad H, Yoshinaga K, et al. Is ventilatory efficiency (VE/VCO(2) slope) associated with right ventricular oxidative metabolism in patients with congestive heart failure? Eur J Heart Fail. 2008;10:1117–22.

    Article  CAS  PubMed  Google Scholar 

  32. Timmer SA, Knaapen P, Germans T, Lubberink M, Dijkmans PA, Vonk-Noordegraaf A, et al. Right ventricular energetics in patients with hypertrophic cardiomyopathy and the effect of alcohol septal ablation. J Card Fail. 2011;17:827–31.

    Article  CAS  PubMed  Google Scholar 

  33. Champion HC, Michelakis ED, Hassoun PM. Comprehensive invasive and noninvasive approach to the right ventricle-pulmonary circulation unit: state of the art and clinical and research implications. Circulation. 2009;120:992–1007.

    Article  PubMed  Google Scholar 

  34. van der Bom T, Winter MM, Groenink M, Vliegen HW, Pieper PG, van Dijk AP, et al. Right ventricular end-diastolic volume combined with peak systolic blood pressure during exercise identifies patients at risk for complications in adults with a systemic right ventricle. J Am Coll Cardiol. 2013;62:926–36.

    Article  PubMed  Google Scholar 

  35. Skrok J, Shehata ML, Mathai S, Girgis RE, Zaiman A, Mudd JO, et al. Pulmonary arterial hypertension: MR imaging-derived first-pass bolus kinetic parameters are biomarkers for pulmonary hemodynamics, cardiac function, and ventricular remodeling. Radiology. 2012;263:678–87.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Oikawa M, Kagaya Y, Otani H, Sakuma M, Demachi J, Suzuki J, et al. Increased [18F]fluorodeoxyglucose accumulation in right ventricular free wall in patients with pulmonary hypertension and the effect of epoprostenol. J Am Coll Cardiol. 2005;45:1849–55.

    Article  CAS  PubMed  Google Scholar 

  37. Lam CS, Borlaug BA, Kane GC, Enders FT, Rodeheffer RJ, Redfield MM. Age-associated increases in pulmonary artery systolic pressure in the general population. Circulation. 2009;119:2663–70.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Kates AM, Herrero P, Dence C, Soto P, Srinivasan M, Delano DG, et al. Impact of aging on substrate metabolism by the human heart. J Am Coll Cardiol. 2003;41:293–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Keiichi Magota, PhD, Hidehiko Omote, RT, Ken-ichi Nishijima, PhD, Daiske Abo, MSc, Kumi Ajiki, and Eriko Suzuki for their support during this study.

This study was supported in part by grants from the Japanese Ministry of Education, Science and Culture (category B, no. 23390294), the Hokkaido Heart Association (H-20; Sapporo, Japan), the Adult Vascular Disease Research Foundation (H22-23; Kyoto, Japan), and the North-Tech Research Foundation (H23-S2-17; Sapporo, Japan). Dr. Yoshinaga is supported by an Imura Clinical Research Award (Adult Vascular Disease Research Foundation).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiichiro Yoshinaga.

Additional information

Clinical trial registration: UMIN000006314, http://www.UMIN.ac.jp/ctr/index/htm/.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshinaga, K., Ohira, H., Tsujino, I. et al. Attenuated right ventricular energetics evaluated using 11C-acetate PET in patients with pulmonary hypertension. Eur J Nucl Med Mol Imaging 41, 1240–1250 (2014). https://doi.org/10.1007/s00259-014-2736-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-014-2736-4

Keywords

Navigation