Skip to main content

Advertisement

Log in

Diagnostic performance and prognostic impact of FDG-PET in suspected recurrence of surgically treated non-small cell lung cancer

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The differentiation of recurrent lung cancer and post-therapeutic changes remains a problem for radiological imaging, but FDG-PET allows biological characterisation of tissues by visualising glucose metabolism. We evaluated the diagnostic performance and prognostic impact of FDG-PET in cases of suspected relapse of lung cancer.

Methods

In 62 consecutive patients, 73 FDG-PET scans were performed for suspected recurrence after surgical therapy of lung cancer. FDG uptake by lesions was measured as the standardised uptake value (SUV). PET results were compared with the final diagnosis established by biopsy or imaging follow-up. SUV and clinical parameters were analysed as prognostic factors with respect to survival.

Results

FDG-PET correctly identified 51 of 55 relapses and gave true negative results in 16 of 18 remissions (sensitivity, specificity, accuracy: 93%, 89%, 92%). SUV in recurrent tumour was higher than in benign post-therapeutic changes (10.6±5.1 vs 2.1±0.6, p<0.001). Median survival was longer for patients with lower FDG uptake in recurrent tumour (SUV<11: 18 months, SUV≥11: 9 months, p<0.01). Long-term survival was observed mainly after surgical re-treatment (3-year survival rate 38%), even if no difference in median survival for surgical or non-surgical re-treatment was detected (11 vs 12 months, p=0.0627). For patients subsequently treated by surgery, lower FDG uptake predicted longer median survival (SUV<11: 46 months, SUV≥11: 3 months, p<0.001). SUV in recurrent tumour was identified as an independent prognostic factor (p<0.05).

Conclusion

FDG-PET accurately detects recurrent lung cancer. SUV in recurrent tumour is an independent prognostic factor. FDG-PET helps in the selection of patients who will benefit from surgical re-treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Heelan RT, Panicek DM, Burt ME, Caravelli JF, Martini N, Bains M, et al. Magnetic resonance imaging of the postpneumonectomy chest: normal and abnormal findings. J Thorac Imaging 1997;12:200–8

    PubMed  Google Scholar 

  2. Lamont JP, Kakuda JT, Smith D, Wagman LD, Grannis FW Jr. Systematic postoperative radiologic follow-up in patients with non-small cell lung cancer for detecting second primary lung cancer in stage IA. Arch Surg 2002;137:935–8; discussion 938–40

    Article  PubMed  Google Scholar 

  3. Baum RP, Hellwig D, Mezzetti M. Position of nuclear medicine modalities in the diagnostic workup of cancer patients: lung cancer. Q J Nucl Med 2004;48:119–42

    Google Scholar 

  4. Patz EF Jr, Lowe VJ, Hoffman JM, Paine SS, Harris LK, Goodman PC. Persistent or recurrent bronchogenic carcinoma: detection with PET and 2-[F-18]-2-deoxy-D-glucose. Radiology 1994;191:379–82

    PubMed  Google Scholar 

  5. Duhaylongsod FG, Lowe VJ, Patz EF Jr, Vaughn AL, Coleman RE, Wolfe WG. Detection of primary and recurrent lung cancer by means of F-18 fluorodeoxyglucose positron emission tomography (FDG PET). J Thorac Cardiovasc Surg 1995;110:130–9; discussion 139–40

    PubMed  Google Scholar 

  6. Frank A, Lefkowitz D, Jaeger S, Gobar L, Sunderland J, Gupta N, et al. Decision logic for retreatment of asymptomatic lung cancer recurrence based on positron emission tomography findings. Int J Radiat Oncol Biol Phys 1995;32:1495–512

    Google Scholar 

  7. Inoue T, Kim EE, Komaki R, Wong FC, Bassa P, Wong WH, et al. Detecting recurrent or residual lung cancer with FDG-PET. J Nucl Med 1995;36:788–93

    PubMed  Google Scholar 

  8. Bury T, Corhay JL, Duysinx B, Daenen F, Ghaye B, Barthelemy N, et al. Value of FDG-PET in detecting residual or recurrent nonsmall cell lung cancer. Eur Respir J 1999;14:1376–80

    Article  PubMed  Google Scholar 

  9. Ukena D, Hellwig D, Palm I, Rentz K, Leutz M, Hellwig AP, et al. Value of positron emission tomography with 18-fluorodeoxyglucose (FDG-PET) in diagnosis of recurrent bronchial carcinoma. Pneumologie 2000;54:49–53

    Article  PubMed  Google Scholar 

  10. Hicks RJ, Kalff V, MacManus MP, Ware RE, McKenzie AF, Matthews JP, et al. The utility of 18F-FDG PET for suspected recurrent non-small cell lung cancer after potentially curative therapy: impact on management and prognostic stratification. J Nucl Med 2001;42:1605–13

    PubMed  Google Scholar 

  11. Keidar Z, Haim N, Guralnik L, Wollner M, Bar-Shalom R, Ben-Nun A, et al. PET/CT using 18F-FDG in suspected lung cancer recurrence: diagnostic value and impact on patient management. J Nucl Med 2004;45:1640–6

    PubMed  Google Scholar 

  12. Hellwig D, Graeter TP, Ukena D, Georg T, Kirsch CM, Schäfers HJ. Value of F-18-fluorodeoxyglucose positron emission tomography after induction therapy of locally advanced bronchogenic carcinoma. J Thorac Cardiovasc Surg 2004;128:892–9

    Article  PubMed  Google Scholar 

  13. Jeong HJ, Min JJ, Park JM, Chung JK, Kim BT, Jeong JM, et al. Determination of the prognostic value of [18F]fluorodeoxyglucose uptake by using positron emission tomography in patients with non-small cell lung cancer. Nucl Med Commun 2002;23:865–70

    Article  PubMed  Google Scholar 

  14. Ahuja V, Coleman RE, Herndon J, Patz EF Jr. The prognostic significance of fluorodeoxyglucose positron emission tomography imaging for patients with nonsmall cell lung carcinoma. Cancer 1998;83:918–24

    Google Scholar 

  15. Downey RJ, Akhurst T, Gonen M, Vincent A, Bains MS, Larson S, et al. Preoperative F-18 fluorodeoxyglucose-positron emission tomography maximal standardized uptake value predicts survival after lung cancer resection. J Clin Oncol 2004;22:3255–60

    Google Scholar 

  16. Higashi K, Ueda Y, Arisaka Y, Sakuma T, Nambu Y, Oguchi M, et al. 18F-FDG uptake as a biologic prognostic factor for recurrence in patients with surgically resected non-small cell lung cancer. J Nucl Med 2002;43:39–45

    PubMed  Google Scholar 

  17. Weber WA, Petersen V, Schmidt B, Tyndale-Hines L, Link T, Peschel C, et al. Positron emission tomography in non-small-cell lung cancer: prediction of response to chemotherapy by quantitative assessment of glucose use. J Clin Oncol 2003;21:2651–7

    Google Scholar 

  18. Patz EF Jr, Connolly J, Herndon J. Prognostic value of thoracic FDG PET imaging after treatment for non-small cell lung cancer. Am J Roentgenol 2000;174:769–74

    Google Scholar 

  19. Mac Manus MP, Hicks RJ, Matthews JP, McKenzie A, Rischin D, Salminen EK, et al. Positron emission tomography is superior to computed tomography scanning for response-assessment after radical radiotherapy or chemoradiotherapy in patients with non-small-cell lung cancer. J Clin Oncol 2003;21:1285–92

    Article  PubMed  Google Scholar 

  20. Egermann U, Jaeggi K, Habicht JM, Perruchoud AP, Dalquen P, Soler M. Regular follow-up after curative resection of nonsmall cell lung cancer: a real benefit for patients? Eur Respir J 2002;19:464–8

    Article  PubMed  Google Scholar 

  21. Asaph JW, Keppel JF, Handy JR Jr, Douville EC, Tsen AC, Ott GY. Surgery for second lung cancers. Chest 2000;118:1621–5

    Article  PubMed  Google Scholar 

  22. Watanabe Y, Shimizu J, Oda M, Tatsuzawa Y, Hayashi Y, Iwa T. Second surgical intervention for recurrent and second primary bronchogenic carcinomas. Scand J Thorac Cardiovasc Surg 1992;26:73–8

    PubMed  Google Scholar 

  23. Curran WJ Jr, Herbert SH, Stafford PM, Sandler HM, Rosenthal SA, McKenna WG, et al. Should patients with post-resection locoregional recurrence of lung cancer receive aggressive therapy? Int J Radiat Oncol Biol Phys 1992;24:25–30

    Google Scholar 

  24. Travis WD, Sobin LH. Histological typing of lung and pleural tumours. 3rd ed. WHO, International histological classification of tumours. Berlin Heidelberg New York: Springer; 1999

    Google Scholar 

  25. World Health Organization. Histological typing of lung tumours. 2nd ed. WHO, international histological classification of tumours. Geneva: World Health Organization; 1981

    Google Scholar 

  26. Thomas M, Gatzemeier U, Goerg R, Matthiessen W, Morr H, Schonfeld N, et al. Recommendations on the diagnosis of bronchial carcinoma. German Pneumology Society. Pneumologie 2000;54:361–71

    Article  PubMed  Google Scholar 

  27. Lowe VJ, Hoffman JM, DeLong DM, Patz EF, Coleman RE. Semiquantitative and visual analysis of FDG-PET images in pulmonary abnormalities. J Nucl Med 1994;35:1771–6

    PubMed  Google Scholar 

  28. Vansteenkiste J, Fischer BM, Dooms C, Mortensen J. Positron-emission tomography in prognostic and therapeutic assessment of lung cancer: systematic review. Lancet Oncol 2004;5:531–40

    Google Scholar 

  29. Hamberg LM, Hunter GJ, Alpert NM, Choi NC, Babich JW, Fischman AJ. The dose uptake ratio as an index of glucose metabolism: useful parameter or oversimplification? J Nucl Med 1994;35:1308–12

    PubMed  Google Scholar 

  30. Matthies A, Hickeson M, Cuchiara A, Alavi A. Dual time point 18F-FDG PET for the evaluation of pulmonary nodules. J Nucl Med 2002;43:871–5

    PubMed  Google Scholar 

  31. Hellwig D, Ukena D, Paulsen F, Bamberg M, Kirsch CM. Metaanalyse zum Stellenwert der Positronen-Emissions-Tomographie mit F-18-Fluorodesoxyglukose (FDG-PET) bei Lungentumoren. Diskussionsbasis der deutschen Konsensus-Konferenz Onko-PET 2000. Pneumologie 2001;55:367–77

    Article  PubMed  Google Scholar 

  32. Higashi K, Ueda Y, Seki H, Yuasa K, Oguchi M, Noguchi T, et al. Fluorine-18-FDG PET imaging is negative in bronchioloalveolar lung carcinoma. J Nucl Med 1998;39:1016–20

    PubMed  Google Scholar 

  33. Hellwig D, Gröschel A, Rentz K, Sybrecht GW, Kirsch CM, Ukena D. Aussagekraft der Positronen-Emissions-Tomographie mit F-18-Fluordesoxyglukose (FDG-PET) beim Bronchioloalveolarzellkarzinom (BAC). Pneumologie 2001;55:363–6

    Article  PubMed  Google Scholar 

  34. Yap CS, Schiepers C, Fishbein MC, Phelps ME, Czernin J. FDG-PET imaging in lung cancer: how sensitive is it for bronchioloalveolar carcinoma? Eur J Nucl Med Mol Imaging 2002;29:1166–73

    Article  PubMed  Google Scholar 

  35. Gould MK, Maclean CC, Kuschner WG, Rydzak CE, Owens DK. Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA 2001;285:914–24

    Article  PubMed  Google Scholar 

  36. Jones HA, Clark RJ, Rhodes CG, Schofield JB, Krausz T, Haslett C. In vivo measurement of neutrophil activity in experimental lung inflammation. Am J Respir Crit Care Med 1994;149:1635–9

    PubMed  Google Scholar 

  37. Nestle U, Hellwig D, Fleckenstein J, Walter K, Ukena D, Rübe C, et al. Comparison of early pulmonary changes in 18FDG-PET and CT after combined radiochemotherapy for advanced non-small-cell lung cancer: a study in 15 patients. Front Radiat Ther Oncol 2002;37:26–33

    PubMed  Google Scholar 

  38. Vansteenkiste JF, Stroobants SG, Dupont PJ, De Leyn PR, Verbeken EK, Deneffe GJ, et al. Prognostic importance of the standardized uptake value on 18F-fluoro-2-deoxy-glucose-positron emission tomography scan in non-small-cell lung cancer: an analysis of 125 cases. Leuven Lung Cancer Group. J Clin Oncol 1999;17:3201–6

    PubMed  Google Scholar 

  39. Higashi K, Ueda Y, Ayabe K, Sakurai A, Seki H, Nambu Y, et al. FDG PET in the evaluation of the aggressiveness of pulmonary adenocarcinoma: correlation with histopathological features. Nucl Med Commun 2000;21:707–14

    Article  PubMed  Google Scholar 

  40. Geworski L, Knoop BO, de Wit M, Ivancevic V, Bares R, Munz DL. Multicenter comparison of calibration and cross calibration of PET scanners. J Nucl Med 2002;43:635–9

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Winfried Bauer from the Saarland Tumour Center for support with the follow-up data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Hellwig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hellwig, D., Gröschel, A., Graeter, T.P. et al. Diagnostic performance and prognostic impact of FDG-PET in suspected recurrence of surgically treated non-small cell lung cancer. Eur J Nucl Med Mol Imaging 33, 13–21 (2006). https://doi.org/10.1007/s00259-005-1919-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-005-1919-4

Keywords

Navigation