Skip to main content
Log in

Modern acceleration in musculoskeletal MRI: applications, implications, and challenges

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging (MRI) is crucial for accurately diagnosing a wide spectrum of musculoskeletal conditions due to its superior soft tissue contrast resolution. However, the long acquisition times of traditional two-dimensional (2D) and three-dimensional (3D) fast and turbo spin-echo (TSE) pulse sequences can limit patient access and comfort. Recent technical advancements have introduced acceleration techniques that significantly reduce MRI times for musculoskeletal examinations. Key acceleration methods include parallel imaging (PI), simultaneous multi-slice acquisition (SMS), and compressed sensing (CS), enabling up to eightfold faster scans while maintaining image quality, resolution, and safety standards. These innovations now allow for 3- to 6-fold accelerated clinical musculoskeletal MRI exams, reducing scan times to 4 to 6 min for joints and spine imaging. Evolving deep learning-based image reconstruction promises even faster scans without compromising quality. Current research indicates that combining acceleration techniques, deep learning image reconstruction, and superresolution algorithms will eventually facilitate tenfold accelerated musculoskeletal MRI in routine clinical practice. Such rapid MRI protocols can drastically reduce scan times by 80–90% compared to conventional methods. Implementing these rapid imaging protocols does impact workflow, indirect costs, and workload for MRI technologists and radiologists, which requires careful management. However, the shift from conventional to accelerated, deep learning-based MRI enhances the value of musculoskeletal MRI by improving patient access and comfort and promoting sustainable imaging practices. This article offers a comprehensive overview of the technical aspects, benefits, and challenges of modern accelerated musculoskeletal MRI, guiding radiologists and researchers in this evolving field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

CAIPIRINHA:

Controlled aliasing in PI results in higher acceleration

CS:

Compressed sensing

DL:

Deep learning

FSE:

Fast spin-echo

PD:

Proton density

PI:

Parallel imaging

MAVRIC:

Multiacquisition variable-resonance image combination

RF:

Radiofrequency

SAR:

Specific absorption rate

SEMAC:

Slice-encoding for metal artifact correction

SMS:

Simultaneous multi-slice acquisition

SNR:

Signal-to-noise ratio

TR:

Repetition time

TSE:

Turbo spin-echo

References

  1. Fritz J, Runge VM. Scientific advances and technical innovations in musculoskeletal radiology. Invest Radiol. 2023;58:1–2.

    Article  PubMed  Google Scholar 

  2. Khodarahmi I, Fritz J. The value of 3 tesla field strength for musculoskeletal magnetic resonance imaging. Invest Radiol. 2021;56:749–63.

    Article  PubMed  Google Scholar 

  3. Barth M, Breuer F, Koopmans PJ, Norris DG, Poser BA. Simultaneous multi-slice (SMS) imaging techniques. Magn Reson Med. 2016;75:63–81.

    Article  PubMed  Google Scholar 

  4. Deshmane A, Gulani V, Griswold MA, Seiberlich N. Parallel MR imaging. J Magn Reson Imaging. 2012;36:55–72.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58:1182–95.

    Article  PubMed  Google Scholar 

  6. Fritz J, Kijowski R, Recht MP. Artificial intelligence in musculoskeletal imaging: a perspective on value propositions, clinical use, and obstacles. Skeletal Radiol. 2022;51:239–43.

    Article  PubMed  Google Scholar 

  7. Lin DJ, Walter SS, Fritz J. Artificial intelligence-driven ultra-fast superresolution MRI: 10-fold accelerated musculoskeletal turbo spin echo MRI within reach. Invest Radiol. 2023;58:28–42.

    Article  PubMed  Google Scholar 

  8. Del Grande F, Guggenberger R, Fritz J. Rapid musculoskeletal MRI in 2021: value and optimized use of widely accessible techniques. AJR Am J Roentgenol. 2021;216:704–17.

    Article  PubMed  Google Scholar 

  9. Garwood ER, Recht MP, White LM. Advanced imaging techniques in the knee: benefits and limitations of new rapid acquisition strategies for routine knee MRI. AJR Am J Roentgenol. 2017;209:552–60.

    Article  PubMed  Google Scholar 

  10. Fritz J, Guggenberger R, Del Grande F. Rapid musculoskeletal MRI in 2021: Am J Roentgenol. 2021;216:718–33.

    Article  Google Scholar 

  11. Breuer FA, Kannengiesser SAR, Blaimer M, Seiberlich N, Jakob PM, Griswold MA. General formulation for quantitative G-factor calculation in GRAPPA reconstructions. Magn Reson Med. 2009;62:739–46.

    Article  PubMed  Google Scholar 

  12. Alaia EFG, Benedick A, Obuchowski NA, Polster JM, Beltran LS, Schils J, et al. Comparison of a fast 5-min knee MRI protocol with a standard knee MRI protocol: a multi-institutional multi-reader study. Skeletal Radiol. 2018;47:107–16.

    Article  PubMed  Google Scholar 

  13. Schnaiter JW, Roemer F, Mckenna-Kuettner A, Patzak HJ, May MS, Janka R, et al. Diagnostic accuracy of an MRI protocol of the knee accelerated through parallel imaging in correlation to arthroscopy. RoFo Fortschritte auf dem Gebiet der Rontgenstrahlen und der Bildgebenden Verfahren. 2017;265–72.

  14. Subhas N, Benedick A, Obuchowski NA, Polster JM, Beltran LS, Schils J, et al. Comparison of a fast 5-minute shoulder MRI protocol with a standard shoulder MRI protocol: a multiinstitutional multireader study. Am J Roentgenol. 2017;208:W146–54.

    Article  Google Scholar 

  15. Magee T, Shapiro M, Williams D, Ramnath RR, Simon J. Usefulness of the simultaneous acquisition of spatial harmonics technique during MRI of the shoulder. AJR Am J Roentgenol. 2003;181:961–4.

    Article  PubMed  Google Scholar 

  16. Bauer JS, Banerjee S, Henning TD, Krug R, Majumdar S, Link TM. Fast high-spatial-resolution MRI of the ankle with parallel imaging using GRAPPA at 3 T. Am J Roentgenol. 2007;189:240–5.

    Article  Google Scholar 

  17. Breuer FA, Blaimer M, Mueller MF, Seiberlich N, Heidemann RM, Griswold MA, et al. Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA). Magn Reson Med. 2006;55:549–56.

    Article  PubMed  Google Scholar 

  18. Del Grande F, Delcogliano M, Guglielmi R, Raithel E, Stern SE, Papp DF, et al. Fully automated 10-minute 3D CAIPIRINHA SPACE TSE MRI of the knee in adults: a multicenter, multireader, multifield-strength validation study. Invest Radiol. 2018;53:689–97.

    Article  PubMed  Google Scholar 

  19. Fritz J, Fritz B, Thawait GG, Meyer H, Gilson WD, Raithel E. Three-dimensional CAIPIRINHA SPACE TSE for 5-minute high-resolution MRI of the knee. Invest Radiol. 2016;51:609–17.

    Article  PubMed  Google Scholar 

  20. Fritz J, Ahlawat S, Fritz B, Thawait GK, Stern SE, Raithel E, et al. 10-Min 3D turbo spin echo MRI of the knee in children: arthroscopy-validated accuracy for the diagnosis of internal derangement. J Magn Reson Imaging. 2019;49:e139–51.

    Article  PubMed  Google Scholar 

  21. Kalia V, Fritz B, Johnson R, Gilson WD, Raithel E, Fritz J. CAIPIRINHA accelerated SPACE enables 10-min isotropic 3D TSE MRI of the ankle for optimized visualization of curved and oblique ligaments and tendons. Eur Radiol. 2017;27:3652–61.

    Article  PubMed  Google Scholar 

  22. Fritz B, Bensler S, Thawait GK, Raithel E, Stern SE, Fritz J. CAIPIRINHA-accelerated 10-min 3D TSE MRI of the ankle for the diagnosis of painful ankle conditions: performance evaluation in 70 patients. Eur Radiol. 2019;29:609–19.

    Article  PubMed  Google Scholar 

  23. Hou B, Li Y, Xiong Y, Morelli JN, Wang J, Liu C, et al. Comparison of CAIPIRINHA-accelerated 3D fat-saturated-SPACE MRI with 2D MRI sequences for the assessment of shoulder pathology. Eur Radiol. 2022;32:593–601.

    Article  CAS  PubMed  Google Scholar 

  24. Fritz J, Fritz B, Zhang J, Thawait GK, Joshi DH, Pan L, et al. Simultaneous multi-slice accelerated turbo spin echo magnetic resonance imaging: comparison and combination with in-plane parallel imaging acceleration for high-resolution magnetic resonance imaging of the knee. Invest Radiol. 2017;52:529–37.

    Article  CAS  PubMed  Google Scholar 

  25. Del Grande F, Rashidi A, Luna R, Delcogliano M, Stern SE, Dalili D, et al. Five-minute five-sequence knee MRI using combined simultaneous multi-slice and parallel imaging acceleration: comparison with 10-minute parallel imaging knee MRI. Radiology. 2021;299:635–46.

    Article  PubMed  Google Scholar 

  26. Preisner F, Hayes JC, Charlet T, Carinci F, Hielscher T, Schwarz D, et al. Simultaneous multi-slice accelerated TSE for improved spatiotemporal resolution and diagnostic accuracy in magnetic resonance neurography. Invest Radiol. 2023;58:363–71.

    Article  CAS  PubMed  Google Scholar 

  27. Haraikawa M, Suzuki M, Inoue K, Kozawa E, Tanaka J, Niitsu M. Simultaneous multi-slice MR imaging of the hip at 3 T to reduce acquisition times and maintain image quality. BMC Musculoskelet Disord. 2018;19:440.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Benali S, Johnston PR, Gholipour A, Dugan ME, Heberlein K, Bhat H, et al. Simultaneous multi-slice accelerated turbo spin echo of the knee in pediatric patients. Skeletal Radiol. 2018;47:821–31.

    Article  PubMed  Google Scholar 

  29. Li X, Peng Z, Sun Y, Cui J. Is simultaneous multisection turbo spin echo ready for clinical MRI? A feasibility study on fast imaging of knee lesions. Clin Radiol. 2020;75:238.e21-238.e30.

    Article  CAS  PubMed  Google Scholar 

  30. Lin Z, Zhang X, Guo L, Wang K, Jiang Y, Hu X, et al. Clinical feasibility study of 3D intracranial magnetic resonance angiography using compressed sensing. J Magn Reson Imaging. 2019;50:1843–51.

    Article  PubMed  Google Scholar 

  31. Fushimi Y, Okada T, Kikuchi T, Yamamoto A, Okada T, Yamamoto T, et al. Clinical evaluation of time-of-flight MR angiography with sparse undersampling and iterative reconstruction for cerebral aneurysms. NMR Biomed. 2017;30(11):e3774.

    Article  Google Scholar 

  32. Yang AC, Kretzler M, Sudarski S, Gulani V, Seiberlich N. Sparse reconstruction techniques in magnetic resonance imaging: methods, applications, and challenges to clinical adoption. Invest Radiol. 2016;51:349–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Li G, Zaitsev M, Büchert M, Raithel E, Paul D, Korvink JG, et al. Improving the robustness of 3D turbo spin echo imaging to involuntary motion. MAGMA. 2015;28:329–45.

    Article  PubMed  Google Scholar 

  34. Kijowski R, Rosas H, Samsonov A, King K, Peters R, Liu F. Knee imaging: rapid three-dimensional fast spin-echo using compressed sensing. J Magn Reson Imaging. 2017;45:1712–22.

    Article  PubMed  Google Scholar 

  35. Gersing AS, Bodden J, Neumann J, Diefenbach MN, Kronthaler S, Pfeiffer D, et al. Accelerating anatomical 2D turbo spin echo imaging of the ankle using compressed sensing. Eur J Radiol. 2019;118:277–84.

    Article  PubMed  Google Scholar 

  36. Matcuk GR, Gross JS, Fields BKK, Cen S. Compressed sensing MR imaging (CS-MRI) of the knee: assessment of quality, inter-reader agreement, and acquisition time. Magn Reson Med Sci. 2020;19:254–8.

    Article  PubMed  Google Scholar 

  37. Fritz J, Raithel E, Thawait GK, Gilson W, Papp DF. Six-fold acceleration of high-spatial resolution 3D SPACE MRI of the knee through incoherent k-space undersampling and iterative reconstruction - First experience. Invest Radiol. 2016;51:400–9.

    Article  PubMed  Google Scholar 

  38. Otazo R, Nittka M, Bruno M, Raithel E, Geppert C, Gyftopoulos S, et al. Sparse-SEMAC: rapid and improved SEMAC metal implant imaging using SPARSE-SENSE acceleration. Magn Reson Med. 2017;78:79–87.

    Article  CAS  PubMed  Google Scholar 

  39. Lu W, Pauly KB, Gold GE, Pauly JM, Hargreaves BA. SEMAC: slice encoding for metal artifact correction in MRI. Magn Reson Med. 2009;62:66–76.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Fritz J, Ahlawat S, Demehri S, Thawait GK, Raithel E, Gilson WD, et al. Compressed sensing SEMAC: 8-fold accelerated high resolution metal artifact reduction MRI of cobalt-chromium knee arthroplasty implants. Invest Radiol. 2016;51:666–76.

    Article  CAS  PubMed  Google Scholar 

  41. Khodarahmi I, Khanuja HS, Stern SE, Carrino JA, Fritz J. Compressed sensing SEMAC MRI of hip, knee, and ankle arthroplasty implants: a 1.5-T and 3-T intrapatient performance comparison for diagnosing periprosthetic abnormalities. Am J Roentgenol. 2023;221:661–72. https://doi.org/10.2214/AJR.23.29380.

    Article  Google Scholar 

  42. Fritz J, Fritz B, Thawait GK, Raithel E, Gilson WD, Nittka M, et al. Advanced metal artifact reduction MRI of metal-on-metal hip resurfacing arthroplasty implants: compressed sensing acceleration enables the time-neutral use of SEMAC. Skeletal Radiol. 2016;45:1345–56.

    Article  PubMed  Google Scholar 

  43. Khodarahmi I, Rajan S, Sterling R, Koch K, Kirsch J, Fritz J. Heating of hip arthroplasty implants during metal artifact reduction MRI at 1.5- and 3.0-t field strengths. Invest Radiol. 2021;56:232–43.

    Article  PubMed  Google Scholar 

  44. Murthy S, Fritz J. Metal artifact reduction MRI in the diagnosis of periprosthetic hip joint infection. Radiology. 2023;306:e220134.

    Article  PubMed  Google Scholar 

  45. Koch KM, Lorbiecki JE, Hinks RS, King KF. A multispectral three-dimensional acquisition technique for imaging near metal implants. Magn Reson Med. 2009;61:381–90.

    Article  PubMed  Google Scholar 

  46. Worters PW, Sung K, Stevens KJ, Koch KM, Hargreaves BA. Compressed-sensing multispectral imaging of the postoperative spine. J Magn Reson Imaging. 2013;37:243–8.

    Article  PubMed  Google Scholar 

  47. Kijowski R, Fritz J. Emerging technology in musculoskeletal MRI and CT. Radiology. 2023;306:6–19.

    Article  PubMed  Google Scholar 

  48. Lee SH, Lee YH, Song HT, Suh JS. Rapid acquisition of magnetic resonance imaging of the shoulder using three-dimensional fast spin echo sequence with compressed sensing. Magn Reson Imaging. 2017;42:152–7.

    Article  PubMed  Google Scholar 

  49. Hammernik K, Klatzer T, Kobler E, Recht MP, Sodickson DK, Pock T, et al. Learning a variational network for reconstruction of accelerated MRI data. Magn Reson Med. 2018;79:3055–71.

    Article  PubMed  Google Scholar 

  50. Schlemper J, Caballero J, Hajnal JV, Price AN, Rueckert D. A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans Med Imaging. 2018;37:491–503.

    Article  PubMed  Google Scholar 

  51. Wang S, Su Z, Ying L, Peng X, Zhu S, Liang F, et al. Accelerating magnetic resonance imaging via deep learning. Proc IEEE Int Symp Biomed Imaging. 2016;2016:514–7.

    PubMed Central  PubMed  Google Scholar 

  52. Germann C, Marbach G, Civardi F, Fucentese SF, Fritz J, Sutter R, et al. Deep convolutional neural network-based diagnosis of anterior cruciate ligament tears: performance comparison of homogenous versus heterogeneous knee MRI cohorts with different pulse sequence protocols and 1.5-T and 3-T magnetic field strengths. Invest Radiol. 2020;55:499–506.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Knoll F, Murrell T, Sriram A, Yakubova N, Zbontar J, Rabbat M, et al. Advancing machine learning for MR image reconstruction with an open competition: overview of the 2019 fastMRI challenge. Magn Reson Med. 2020;84:3054–70.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Subhas N, Li H, Yang M, Winalski CS, Polster J, Obuchowski N, et al. Diagnostic interchangeability of deep convolutional neural networks reconstructed knee MR images: preliminary experience. Quant Imaging Med Surg. 2020;10:1748–62.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Recht MP, Zbontar J, Sodickson DK, Knoll F, Yakubova N, Sriram A, et al. Using deep learning to accelerate knee MRI at 3 T: results of an interchangeability study. AJR Am J Roentgenol. 2020;215:1421–9.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Herrmann J, Koerzdoerfer G, Nickel D, Mostapha M, Nadar M, Gassenmaier S, et al. Feasibility and implementation of a deep learning MR reconstruction for TSE sequences in musculoskeletal imaging. Diagnostics (Basel). 2021;11(8):1484.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Almansour H, Herrmann J, Gassenmaier S, Afat S, Jacoby J, Koerzdoerfer G, et al. Deep learning reconstruction for accelerated spine MRI: prospective analysis of interchangeability. Radiology. 2023;306:212922.

    Article  Google Scholar 

  58. Hahn S, Yi J, Lee H-J, Lee Y, Lim Y-J, Bang J-Y, et al. Image quality and diagnostic performance of accelerated shoulder MRI with deep learning-based reconstruction. AJR Am J Roentgenol. 2022;218:506–16.

    Article  PubMed  Google Scholar 

  59. Kim M, Lee S-M, Park C, Lee D, Kim KS, Jeong HS, et al. Deep learning-enhanced parallel imaging and simultaneous multi-slice acceleration reconstruction in knee MRI. Invest Radiol. 2022;57:826–33.

    Article  CAS  PubMed  Google Scholar 

  60. Akkoc E, Fritz J, Zhang HC. 6-Minute turbo spin echo MRI of the elbow using combined simultaneous multi-slice and parallel imaging acceleration. Proc Intl Soc Mag Reson Med 30. 2022.

  61. Runge VM, Richter JK, Heverhagen JT. Speed in clinical magnetic resonance. Invest Radiol. 2017;52:1–17.

    Article  PubMed  Google Scholar 

  62. Rusche T, Vosshenrich J, Winkel DJ, Donners R, Segeroth M, Bach M, et al. More space, less noise-new-generation low-field magnetic resonance imaging systems can improve patient comfort: a prospective 0.55T–1.5T-scanner comparison. J Clin Med. 2022;11:6705.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Eshed I, Althoff CE, Hamm B, Hermann K-GA. Claustrophobia and premature termination of magnetic resonance imaging examinations. J Magn Reson Imaging. 2007;26:401–4.

    Article  PubMed  Google Scholar 

  64. Dewey M, Schink T, Dewey CF. Claustrophobia during magnetic resonance imaging: cohort study in over 55,000 patients. J Magn Reson Imaging. 2007;26:1322–7.

    Article  PubMed  Google Scholar 

  65. Murphy KJ, Brunberg JA. Adult claustrophobia, anxiety and sedation in MRI. Magn Reson Imaging. 1997;15:51–4.

    Article  CAS  PubMed  Google Scholar 

  66. Quirk ME, Letendre AJ, Ciottone RA, Lingley JF. Anxiety in patients undergoing MR imaging. Radiology. 1989;170:463–6.

    Article  CAS  PubMed  Google Scholar 

  67. Runge VM, Heverhagen JT. Advocating the development of next-generation, advanced-design low-field magnetic resonance systems. Invest Radiol. 2020;55:747–53.

    Article  PubMed  Google Scholar 

  68. Drose JA, Pritchard NL, Honce JM, Snuttjer DK, Borgstede JP. Utilizing process improvement methodology to improve inpatient access to MRI. Radiographics. 2019;39:2103–10.

    Article  PubMed  Google Scholar 

  69. Tokur S, Lederle K, Terris DD, Jarczok MN, Bender S, Schoenberg SO, et al. Process analysis to reduce MRI access time at a German University Hospital. Int J Qual Health Care. 2012;24:95–9.

    Article  CAS  PubMed  Google Scholar 

  70. Parker L, Nazarian LN, Carrino JA, Morrison WB, Grimaldi G, Frangos AJ, et al. Musculoskeletal imaging: medicare use, costs, and potential for cost substitution. J Am Coll Radiol. 2008;5:182–8.

    Article  PubMed  Google Scholar 

  71. Vasanawala SS, Alley MT, Hargreaves BA, Barth RA, Pauly JM, Lustig M. Improved pediatric MR imaging with compressed sensing. Radiology. 2010;256:607–16.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Recht MP, Block KT, Chandarana H, Friedland J, Mullholland T, Teahan D, et al. Optimization of MRI turnaround times through the use of dockable tables and innovative architectural design strategies. AJR Am J Roentgenol. 2019;212:855–8.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Zaitsev M, Maclaren J, Herbst M. Motion artifacts in MRI: a complex problem with many partial solutions. J Magn Reson Imaging. 2015;42:887–901.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Andre JB, Bresnahan BW, Mossa-Basha M, Hoff MN, Smith CP, Anzai Y, et al. Toward quantifying the prevalence, severity, and cost associated with patient motion during clinical MR examinations. J Am Coll Radiol. 2015;12:689–95.

    Article  PubMed  Google Scholar 

  75. Madl JEM, Sturmbauer SC, Janka R, Bay S, Rohleder N. Preparing patients according to their individual coping style improves patient experience of magnetic resonance imaging. J Behav Med. 2022;45:841–54.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Jaimes C, Robson CD, Machado-Rivas F, Yang E, Mahan K, Bixby SD, et al. Success of nonsedated neuroradiologic MRI in children 1–7 years old. AJR Am J Roentgenol. 2021;216:1370–7.

    Article  PubMed  Google Scholar 

  77. Harrington SG, Jaimes C, Weagle KM, Greer M-LC, Gee MS. Strategies to perform magnetic resonance imaging in infants and young children without sedation. Pediatr Radiol. 2022;52:374–81.

    Article  PubMed  Google Scholar 

  78. Trofimova A, Kadom N. Added value from abbreviated brain MRI in children with headache. AJR Am J Roentgenol. 2019;212:1348–53.

    Article  PubMed  Google Scholar 

  79. Fagundes J, Longo MG, Huang SY, Rosen BR, Witzel T, Heberlein K, et al. Diagnostic performance of a 10-minute gadolinium-enhanced brain MRI protocol compared with the standard clinical protocol for detection of intracranial enhancing lesions. AJNR Am J Neuroradiol. 2017;38:1689–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Heye T, Knoerl R, Wehrle T, Mangold D, Cerminara A, Loser M, et al. The energy consumption of radiology: energy- and cost-saving opportunities for CT and MRI operation. Radiology. 2020;295:593–605.

    Article  PubMed  Google Scholar 

  81. Woolen SA, Becker AE, Martin AJ, Knoerl R, Lam V, Folsom J, et al. Ecodesign and operational strategies to reduce the carbon footprint of MRI for energy cost savings. Radiology. 2023;307:e230441.

    Article  PubMed  Google Scholar 

  82. Siemens Healthineers. Sustainability in MRI: The power of less is more [Internet]. 2023 [cited 2023 Aug 1]. https://www.siemens-healthineers.com/en-us/magnetic-resonance-imaging/sustainability-in-mri

  83. Khodarahmi I, Keerthivasan MB, Brinkmann IM, Grodzki D, Fritz J. Modern low-field MRI of the musculoskeletal system: practice considerations, opportunities, and challenges. Invest Radiol. 2023;58:76–87.

    Article  PubMed  Google Scholar 

  84. Vosshenrich J, Breit H-C, Bach M. Merkle EM [Economic aspects of low-field magnetic resonance imaging : acquisition, installation, and maintenance costs of 0.55 T systems]. Radiologe. 2022;62:400–4.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Breit H-C, Vosshenrich J, Hofmann V, Rusche T, Kovacs BK, Bach M, et al. Image quality of lumbar spine imaging at 0.55T low-field MRI is comparable to conventional 1.5T MRI - initial observations in healthy volunteers. Acad Radiol. 2023;30:2440–6.

    Article  PubMed  Google Scholar 

  86. Khodarahmi I, Brinkmann IM, Lin DJ, Bruno M, Johnson PM, Knoll F, et al. New-generation low-field magnetic resonance imaging of hip arthroplasty implants using slice encoding for metal artifact correction: first in vitro experience at 0.55 T and comparison with 1.5 T. Invest Radiol. 2022;57:517–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Beker K, Garces-Descovich A, Mangosing J, Cabral-Goncalves I, Hallett D, Mortele KJ. Optimizing MRI logistics: prospective analysis of performance, efficiency, and patient throughput. AJR Am J Roentgenol. 2017;209:836–44.

    Article  PubMed  Google Scholar 

  88. Parikh JR, Van MA, Mead L, Bassett R, Rubin E. Prevalence of burnout of radiologists in private practice. J Am Coll Radiol. 2023;20:712–8.

    Article  PubMed  Google Scholar 

  89. Mohammed S, Rosenkrantz AB, Recht MP. Preventing burnout in the face of growing patient volumes in a busy outpatient CT suite: a technologist perspective. Curr Probl Diagn Radiol. 2020;49:70–3.

    Article  PubMed  Google Scholar 

  90. Schartz E, Manganaro M, Schartz D. Declining medicare reimbursement for diagnostic radiology: a 10-year analysis across 50 imaging Studies. Curr Probl Diagn Radiol. 2022;51:693–8.

    Article  PubMed  Google Scholar 

  91. Tulipan J, Beredjiklian P, Gandhi JS, Liss F, Rivlin M. Changes in medicare reimbursement for advanced upper extremity imaging. J Hand Surg Am. 2019;44:246.e1-246.e7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Fritz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vosshenrich, J., Koerzdoerfer, G. & Fritz, J. Modern acceleration in musculoskeletal MRI: applications, implications, and challenges. Skeletal Radiol (2024). https://doi.org/10.1007/s00256-024-04634-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00256-024-04634-2

Keywords

Navigation