Skip to main content
Log in

Clinical prediction models for knee pain in patients with knee osteoarthritis: a systematic review

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To identify and describe existing models for predicting knee pain in patients with knee osteoarthritis.

Methods

The electronic databases PubMed, EMBASE, CINAHL, Web of Science, and Cochrane Library were searched from their inception to May 2023 for any studies to develop and validate a prediction model for predicting knee pain in patients with knee osteoarthritis. Two reviewers independently screened titles, abstracts, and full-text qualifications, and extracted data. Risk of bias was assessed using the PROBAST. Data extraction of eligible articles was extracted by a data extraction form based on CHARMS. The quality of evidence was graded according to GRADE. The results were summarized with descriptive statistics.

Results

The search identified 2693 records. Sixteen articles reporting on 26 prediction models were included targeting occurrence (n = 9), others (n = 7), progression (n = 5), persistent (n = 2), incident (n = 1), frequent (n = 1), and flares (n = 1) of knee pain. Most of the studies (94%) were at high risk of bias. Model discrimination was assessed by the AUROC ranging from 0.62 to 0.81. The most common predictors were age, BMI, gender, baseline pain, and joint space width. Only frequent knee pain had a moderate quality of evidence; all other types of knee pain had a low quality of evidence.

Conclusion

There are many prediction models for knee pain in patients with knee osteoarthritis that do show promise. However, the clinical extensibility, applicability, and interpretability of predictive tools should be considered during model development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used and analyzed in the current study are available from the corresponding author upon reasonable request.

References

  1. Dainese P, Wyngaert KV, De Mits S, Wittoek R, Van Ginckel A, Calders P. Association between knee inflammation and knee pain in patients with knee osteoarthritis: a systematic review. Osteoarthr Cartil. 2022;30(4):516–34.

    Article  CAS  Google Scholar 

  2. Vongsirinavarat M, Nilmart P, Somprasong S, Apinonkul B. Identification of knee osteoarthritis disability phenotypes regarding activity limitation: a cluster analysis. BMC Musculoskelet Disord. 2020;21(1):237.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Driban JB, Harkey MS, Liu S-H, Salzler M, McAlindon TE. Osteoarthritis and Aging: Young Adults with Osteoarthritis. Curr Epidemiol Rep. 2020;7(1):9–15.

    Article  Google Scholar 

  4. Luan L, El-Ansary D, Adams R, Wu S, Han J. Knee osteoarthritis pain and stretching exercises: a systematic review and meta-analysis. Physiotherapy. 2022;114:16–29.

    Article  PubMed  Google Scholar 

  5. Liu J, Chen L, Tu Y, Chen X, Hu K, Tu Y, Lin M, Xie G, Chen S, Huang J, Liu W, Wu J, Xiao T, Wilson G, Lang C, Park J, Tao J, Kong J. Different exercise modalities relieve pain syndrome in patients with knee osteoarthritis and modulate the dorsolateral prefrontal cortex A multiple mode MRI study. Brain Behav Immun. 2019;82:253–63.

    Article  PubMed  Google Scholar 

  6. Peterson JA, Meng L, Rani A, Sinha P, Johnson AJ, Huo Z, et al. Epigenetic aging, knee pain and physical performance in community-dwelling middle-to-older age adults. Exp Gerontol. 2022;166:11681.

  7. Landsmeer MLA, Runhaar J, van Middelkoop M, Oei EHG, Schiphof D, Bindels PJE, et al. Predicting Knee Pain and Knee Osteoarthritis Among Overweight Women. J Am Board Fam Med. 2019;32(4):575–84.

    Article  PubMed  Google Scholar 

  8. Vina ER, Ran D, Ashbeck EL, Kwoh CK. Natural history of pain and disability among African–Americans and Whites with or at risk for knee osteoarthritis: A longitudinal study. Osteoarthr Cartil. 2018;26(4):471–9.

    Article  CAS  Google Scholar 

  9. Misra D, Fielding RA, Felson DT, Niu J, Brown C, Nevitt M, et al. Risk of Knee Osteoarthritis With Obesity, Sarcopenic Obesity, and Sarcopenia. Arthritis Rheum. 2019;71(2):232–7.

    Article  Google Scholar 

  10. Sharma L. Osteoarthritis of the Knee. N Engl J Med. 2021;384(1):51–9.

    Article  CAS  PubMed  Google Scholar 

  11. Guan B, Liu F, Mizaian AH, Demehri S, Samsonov A, Guermazi A, et al. Deep learning approach to predict pain progression in knee osteoarthritis. Skelet Radiol. 2022;51(2):363–73.

    Article  Google Scholar 

  12. Neogi T, Frey-Law L, Scholz J, Niu J, Arendt-Nielsen L, Woolf C, Nevitt M, Bradley L, Felson DT. Sensitivity and sensitisation in relation to pain severity in knee osteoarthritis trait or state. Ann Rheum Dis. 2015;74(4):682–8.

    Article  PubMed  Google Scholar 

  13. Atukorala I, Pathmeswaran A, Makovey J, Metcalf B, Bennell KL, March L, et al. Can pain flares in knee osteoarthritis be predicted? Scand J Rheumatol. 2021;50(3):198–205.

    Article  CAS  PubMed  Google Scholar 

  14. Goulston LM, Kiran A, Javaid MK, Soni A, White KM, Hart DJ, Spector TD, Arden NK. Does obesity predict knee pain over fourteen years in women, independently of radiographic changes? Arthritis Care Res. 2011;63(10):1398–406.

    Article  Google Scholar 

  15. Jinks C, Jordan KP, Blagojevic M, Croft P. Predictors of onset and progression of knee pain in adults living in the community. A prospective study. Rheumatology (Oxford, England). 2008;47(3):368–74.

  16. Urish KL, Keffalas MG, Durkin JR, Miller DJ, Chu CR, Mosher TJ. T2 texture index of cartilage can predict early symptomatic OA progression: data from the osteoarthritis initiative. Osteoarthr Cartil. 2013;21(10):1550–7.

    Article  CAS  Google Scholar 

  17. Zhong H, Miller DJ, Urish KL. T2 map signal variation predicts symptomatic osteoarthritis progression: data from the Osteoarthritis Initiative. Skelet Radiol. 2016;45(7):909–13.

    Article  Google Scholar 

  18. van Helvoort EM, Ladel C, Mastbergen S, Kloppenburg M, Blanco FJ, Haugen IK, et al. Baseline clinical characteristics of predicted structural and pain progressors in the IMI-APPROACH knee OA cohort. RMD Open. 2021;7(3)

  19. Papadomanolakis-Pakis N, Uhrbrand P, Haroutounian S, Nikolajsen L. Prognostic prediction models for chronic postsurgical pain in adults: a systematic review. Pain. 2021;162(11):2644–57.

    Article  PubMed  Google Scholar 

  20. Wolff RF, Moons KGM, Riley RD, Whiting PF, Westwood M, Collins GS, et al. PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies. Ann Intern Med. 2019;170(1):51–8.

    Article  PubMed  Google Scholar 

  21. Debray TP, Damen JA, Snell KI, Ensor J, Hooft L, Reitsma JB, et al. A guide to systematic review and meta-analysis of prediction model performance. BMJ. 2017;356:i6460.

    Article  PubMed  Google Scholar 

  22. Moons KG, de Groot JA, Bouwmeester W, Vergouwe Y, Mallett S, Altman DG, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS Med. 2014;11(10):e1001744.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Damen JAA, Moons KGM, van Smeden M, Hooft L. How to conduct a systematic review and meta-analysis of prognostic model studies. Clin Microbiol Infect. 2023;29(4):434–40.

  25. Huguet A, Hayden JA, Stinson J, McGrath PJ, Chambers CT, Tougas ME, et al. Judging the quality of evidence in reviews of prognostic factor research: adapting the GRADE framework. Syst Rev. 2013;2(1):71.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chen R, Wang SF, Zhou JC, Sun F, Wei WW, Zhan SY. Introduction of the prediction model risk of bias assessment tool: a tool to assess risk of bias and applicability of prediction model studies. Chin J Epidemmiol. 2020;41(5):776–81.

    CAS  Google Scholar 

  27. Kennedy EE, Bowles KH, Aryal S. Systematic review of prediction models for postacute care destination decision-making. J Am Med Inform Assoc. 2021;29(1):176–86.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Panken G, Verhagen AP, Terwee CB, Heymans MW. Clinical Prediction Models for Patients With Nontraumatic Knee Pain in Primary Care: A Systematic Review and Internal Validation Study. J Orthop Sports Phys Ther. 2017;47(8):518–29.

    Article  PubMed  Google Scholar 

  29. Belsher BE, Smolenski DJ, Pruitt LD, Bush NE, Beech EH, Workman DE, et al. Prediction Models for Suicide Attempts and Deaths: A Systematic Review and Simulation. JAMA Psychiat. 2019;76(6):642–51.

    Article  Google Scholar 

  30. Luna-Gómez CD, Zanella-Calzada LA, Galván-Tejada JI, Galván-Tejada CE, Celaya-Padilla JM. Can multivariate models based on MOAKS predict OA knee pain? Data from the Osteoarthritis Initiative. Med Imaging 2017: Computer-Aided Diagnosis. 2017;10134:1074–80.

  31. Liu Y, Joseph GB, Foreman SC, Li X, Lane NE, Nevitt MC, et al. Determining a Threshold of Medial Meniscal Extrusion for Prediction of Knee Pain and Cartilage Damage Progression Over 4 Years: Data From the Osteoarthritis Initiative. AJR Am J Roentgenol. 2021;216(5):1318–28.

    Article  PubMed  Google Scholar 

  32. Watt EW, Bui AAT. Evaluation of a dynamic bayesian belief network to predict osteoarthritic knee pain using data from the osteoarthritis initiative. AMIA annual symposium proceedings American Medical Informatics Association. 2008;788–92.

  33. Galván-Tejada JI, Arceo-Olague JG, Luna-García H, Gamboa-Rosales H, Celaya-Padilla JM, R Lam-Q, et al. General Linear Models for Pain Prediction in Knee Osteoarthritis Data from the Osteoarthritis Initiative. Rev Mex de Ing Biomed. 2018;39(1):29–40.

    Google Scholar 

  34. Galvan-Tejada JI, Celaya-Padilla JM, Trevino V, Tamez-Pena JG. Multivariate Radiological-Based Models for the Prediction of Future Knee Pain: Data from the OAI. Comput Math Methods Med. 2015;2015:794141.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Alexos A, Kokkotis C, Moustakidis S, Papageorgiou EI, Tsaopoulos DE. Prediction of pain in knee osteoarthritis patients using machine learning: data from osteoarthritis initiative. In: 2020 11th International Conference on Information, Intelligence, Systems and Applications IISA. 2020;1–7.

  36. Kraus VB, Collins JE, Hargrove D, Losina E, Nevitt M, Katz JN, et al. Predictive validity of biochemical biomarkers in knee osteoarthritis: data from the FNIH OA Biomarkers Consortium. Ann Rheum Dis. 2017;76(1):186–95.

    Article  CAS  PubMed  Google Scholar 

  37. Galván-Tejada JI, Celaya-Padilla JM, Galván Tejada CE, Trevino V, Tamez-Pena JG. Radiological Pain Predictors in Knee Osteoarthritis, a Four Feature Selection Comparison Data from the OAI. In: Mexican Conference on Pattern Recognition, vol. 2014. Cham: Springer; 2014. p. 351–60.

    Chapter  Google Scholar 

  38. Galván-Tejada JI, Celaya Padilla JM, Martínez-Torteya A, Rodriguez-Rojas J, Trevino V, Tamez-Pena JG. Wide association study of radiological features that predict future knee OA pain: data from the OAI. Med Imaging 2014: Computer-Aided Diagnosis. 2014;9035:842–6.

  39. Akin-Akinyosoye K, Sarmanova A, Fernandes GS, Frowd N, Swaithes L, Stocks J, et al. Baseline self-report 'central mechanisms' trait predicts persistent knee pain in the Knee Pain in the Community (KPIC) cohort. Osteoarthr Cartil. 2020;28(2):173–81.

    Article  CAS  Google Scholar 

  40. Baumbach L, List M, Gronne DT, Skou ST, Roos EM. Individualized predictions of changes in knee pain, quality of life and walking speed following patient education and exercise therapy in patients with knee osteoarthritis - a prognostic model study. Osteoarthr Cartil. 2020;28(9):1191–201.

    Article  CAS  Google Scholar 

  41. Belo JN, Berger MY, Koes BW, Bierma-Zeinstra SM. Prognostic factors in adults with knee pain in general practice. Arthritis Rheum. 2009;61(2):143–51.

    Article  CAS  PubMed  Google Scholar 

  42. Fernandes GS, Bhattacharya A, McWilliams DF, Ingham SL, Doherty M, Zhang W. Risk prediction model for knee pain in the Nottingham community: a Bayesian modelling approach. Arthritis Res Ther. 2017;19(1):59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Luna-Gomez CD, Zanella-Calzada LA, Acosta-Garcia MA, Galvan-Tejada JI, Galvan-Tejada CE, Celaya-Padilla JM. Can multivariate models based on MOAKS predict OA knee pain? : Data from the Osteoarthritis Initiative. Conference on Medical Imaging - Computer-Aided Diagnosis; 2017 2017 Feb 13-16; Orlando, FL; 2017.

  44. Galvan-Tejada JI, Celaya-Padilla JM, Galvan-Tejada CE, Trevino V, Tamez-Pena JG. Radiological pain predictors in knee osteoarthritis, a four feature selection comparison: data from the OAI. In: Pattern recognition: 6th Mexican Conference, MCPR 2014, Cancun, Mexico, June 25-28, 2014. Proceedings 6. Springer International Publishing. 2014;351–60.

  45. Galvan-Tejada JI, Celaya-Padilla JM, Martinez-Torteya A, Rodriguez-Rojas J, Trevino V, Tamez-Pena JG. Wide association study of radiological features that predict future knee oa pain: data from the OAI. In: Medical imaging 2014: computer-aided diagnosis. SPIE. 2014;9035:842–6.

  46. Watt EW, Bui AAT. Evaluation of a dynamic bayesian belief network to predict osteoarthritic knee pain using data from the osteoarthritis initiative. AMIA Annual Symposium proceedings AMIA Symposium. 2008:788-792.

  47. Tu JV. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol. 1996;49(11):1225–31.

  48. Boniatis I, Costaridou L, Cavouras D, Kalatzis I, Panagiotopoulos E, Panayiotakis G. Assessing hip osteoarthritis severity utilizing a probabilistic neural network based classification scheme. Med Eng Phys. 2007;29(2):227–37.

    Article  CAS  PubMed  Google Scholar 

  49. Singh SP, Wang L, Gupta S, Goli H, Padmanabhan P, Gulyas B. 3D deep learning on medical images: a review. Sensors (Basel). 2020;20(18):5097.

  50. Kokkotis C, Moustakidis S, Papageorgiou E, Giakas G, Tsaopoulos DE. Machine learning in knee osteoarthritis: A review. Osteoarthr Cartil Open. 2020;2(3)

  51. Hunter DJ, Schofield D, Callander E. The individual and socioeconomic impact of osteoarthritis. Nat Rev Rheumatol. 2014;10(7):437–41.

  52. Liu L, Zhu MM, Cai LL, Zhang X. Predictive models for knee pain in middle-aged and elderly individuals based on machine learning methods. Comput Math Methods Med. 2022;2022:5005195.

Download references

Funding

This work was supported by the Key Technologies Research and Development Program (2020YFC2008801) and the National Natural Science Foundation of China (81972158, 82102661).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaomei Shang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 22 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, B., Chen, H., Wang, C. et al. Clinical prediction models for knee pain in patients with knee osteoarthritis: a systematic review. Skeletal Radiol 53, 1045–1059 (2024). https://doi.org/10.1007/s00256-024-04590-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-024-04590-x

Keywords

Navigation