Skip to main content
Log in

Assessment of knee instability in ACL-injured knees using weight-bearing computed tomography (WBCT): a novel protocol and preliminary results

  • Technical Report
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To propose a protocol for assessing knee instability in ACL-injured knees using weight-bearing computed tomography (WBCT).

Materials and methods

We enrolled five patients with unilateral chronic ACL tears referred for WBCT. Bilateral images were obtained in four positions: bilateral knee extension, bilateral knee flexion, single-leg stance with knee flexion and external rotation, and single-leg stance with knee flexion and internal rotation. The radiation dose, time for protocol acquisition, and patients’ tolerance of the procedure were recorded. A blinded senior radiologist assessed image quality and measured the anterior tibial translation (ATT) and femorotibial rotation (FTR) angle in the ACL-deficient and contralateral healthy knee.

Results

All five patients were male, aged 23–30 years old. The protocol resulted in a 16.2 mGy radiation dose and a 15-min acquisition time. The procedure was well-tolerated, and patient positioning was uneventful, providing good-quality images. In all positions, the mean ATT and FTR were greater in ACL-deficient knees versus the healthy knee, with more pronounced differences observed in the bilateral knee flexion position. Mean lateral ATT in the flexion position was 9.1±2.8 cm in the ACL-injured knees versus 4.0±1.8 cm in non-injured knees, and mean FTR angle in the bilateral flexion position was 13.5°±7.7 and 8.6°±4.6 in the injured and non-injured knees, respectively.

Conclusion

Our protocol quantitatively assesses knee instability with WBCT, measuring ATT and FTR in diverse knee positions. It employs reasonable radiation, is fast, well-tolerated, and yields high-quality images. Preliminary findings suggest ACL-deficient knees show elevated ATT and FTR, particularly in the 30° flexion position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rong GW, Wang YC. The role of cruciate ligaments in maintaining knee joint stability. Clin Orthop Relat Res. 1987;215:65–71.

    Article  Google Scholar 

  2. Ahrens P, Kirchhoff C, Fischer F, Heinrich P, Eisenhart-Rothe R, Hinterwimmer S, et al. A novel tool for objective assessment of femorotibial rotation: a cadaver study. Int Orthop. 2011;35(11):1611–20.

    Article  PubMed  Google Scholar 

  3. Dennis DA, Mahfouz MR, Komistek RD, Hoff W. In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics. J Biomech. 2005;38(2):241–53.

    Article  PubMed  Google Scholar 

  4. Haughom BD, Souza R, Schairer WW, Li X, Ma CB. Evaluating rotational kinematics of the knee in ACL-ruptured and healthy patients using 3.0 Tesla magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc. 2012;20(4):663–70.

    Article  PubMed  Google Scholar 

  5. Stergiou N, Ristanis S, Moraiti C, Georgoulis AD. Tibial rotation in anterior cruciate ligament (ACL)-deficient and ACL-reconstructed knees: a theoretical proposition for the development of osteoarthritis. Sports Med. 2007;37(7):601–13.

    Article  PubMed  Google Scholar 

  6. Lohmander LS, Ostenberg A, Englund M, Roos H. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum. 2004;50(10):3145–52.

    Article  PubMed  CAS  Google Scholar 

  7. Prins M. The Lachman test is the most sensitive and the pivot shift the most specific test for the diagnosis of ACL rupture. Aust J Physiother. 2006;52(1):66.

    Article  PubMed  Google Scholar 

  8. Galway HR, MacIntosh DL. The lateral pivot shift: a symptom and sign of anterior cruciate ligament insufficiency. Clin Orthop Relat Res. 1980;147:45–50.

    Article  Google Scholar 

  9. Wang YL, Yang T, Zeng C, Wei J, Xie DX, Yang YH, et al. Association between tibial plateau slopes and anterior cruciate ligament injury: a meta-analysis. Arthroscopy. 2017;33(6):1248–1259.e1244.

    Article  Google Scholar 

  10. Chan WP, Peterfy C, Fritz RC, Genant HK. MR diagnosis of complete tears of the anterior cruciate ligament of the knee: importance of anterior subluxation of the tibia. AJR Am J Roentgenol. 1994;162(2):355–60.

    Article  PubMed  CAS  Google Scholar 

  11. Magnussen RA, Reinke EK, Huston LJ, Hewett TE, Spindler KP, Amendola A, et al. Effect of high-grade preoperative knee laxity on 6-year anterior cruciate ligament reconstruction outcomes. Am J Sports Med. 2018;46(12):2865–72.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vassalou EE, Klontzas ME, Kouvidis GK, Matalliotaki PI, Karantanas AH. Rotational knee laxity in anterior cruciate ligament deficiency: an additional secondary sign on MRI. AJR Am J Roentgenol. 2016;206(1):151–4.

    Article  Google Scholar 

  13. Ye Z, Xu J, Chen J, Qiao Y, Wu C, Xie G, et al. Steep lateral tibial slope measured on magnetic resonance imaging is the best radiological predictor of anterior cruciate ligament reconstruction failure. Knee Surg Sports Traumatol Arthrosc. 2022;30(10):3377–85.

    Article  Google Scholar 

  14. Beynnon BD, Fleming BC, Labovitch R, Parsons B. Chronic anterior cruciate ligament deficiency is associated with increased anterior translation of the tibia during the transition from non-weightbearing to weightbearing. J Orthop Res. 2002;20(2):332–7.

    Article  PubMed  Google Scholar 

  15. Kothari A, Haughom B, Subburaj K, Feeley B, Li X, Ma CB. Evaluating rotational kinematics of the knee in ACL reconstructed patients using 3.0 Tesla magnetic resonance imaging. Knee. 2012;19(5):648–51.

    Article  PubMed Central  Google Scholar 

  16. Hirschmann A, Buck FM, Fucentese SF, Pfirrmann CW. Upright CT of the knee: the effect of weight-bearing on joint alignment. Eur Radiol. 2015;25(11):3398–404.

    Article  Google Scholar 

  17. Willauer P, Sangeorzan BJ, Whittaker EC, Shofer JB, Ledoux WR. The sensitivity of standard radiographic foot measures to misalignment. Foot Ankle Int. 2014;35(12):1334–40.

    Article  PubMed  Google Scholar 

  18. Baverel L, Brilhault J, Odri G, Boissard M, Lintz F. Influence of lower limb rotation on hindfoot alignment using a conventional two-dimensional radiographic technique. Foot Ankle Surg. 2017;23(1):44–9.

    Article  PubMed  CAS  Google Scholar 

  19. Fritz B, Fritz J, Fucentese SF, Pfirrmann CWA, Sutter R. Three-dimensional analysis for quantification of knee joint space width with weight-bearing CT: comparison with non-weight-bearing CT and weight-bearing radiography. Osteoarthritis Cartilage. 2022;30(5):671–80.

    Article  PubMed  CAS  Google Scholar 

  20. Lullini G, Belvedere C, Busacca M, Moio A, Leardini A, Caravelli S, et al. Weight bearing versus conventional CT for the measurement of patellar alignment and stability in patients after surgical treatment for patellar recurrent dislocation. Radiol Med. 2021;126(6):869–77.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kim SH, Park YB, Ham DW, Lim JW, Lee HJ. Stress radiography at 30° of knee flexion is a reliable evaluation tool for high-grade rotatory laxity in complete ACL-injured knees. Knee Surg Sports Traumatol Arthrosc. 2020;28(7):2233–44.

    Article  PubMed  Google Scholar 

  22. Beldame J, Bertiaux S, Roussignol X, Lefebvre B, Adam JM, Mouilhade F, et al. Laxity measurements using stress radiography to assess anterior cruciate ligament tears. Orthop Traumatol Surg Res. 2011;97(1):34–43.

    Article  PubMed  CAS  Google Scholar 

  23. Vahey TN, Hunt JE, Shelbourne KD. Anterior translocation of the tibia at MR imaging: a secondary sign of anterior cruciate ligament tear. Radiology. 1993;187(3):817–9.

    Article  PubMed  CAS  Google Scholar 

  24. Hong CK, Lin YJ, Cheng TA, Chang CH, Hsu KL, Kuan FC, et al. Adult patients with ACL tears have greater tibial internal rotation in MRI compared to adolescent patients. J Orthop Surg Res. 2022;17(1):17.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tuominen EK, Kankare J, Koskinen SK, Mattila KT. Weight-bearing CT imaging of the lower extremity. AJR Am J Roentgenol. 2013;200(1):146–8.

    Article  PubMed  Google Scholar 

  26. Mayo-Smith WW, Hara AK, Mahesh M, Sahani DV, Pavlicek W. How I do it: managing radiation dose in CT. Radiology. 2014;273(3):657–72.

    Article  PubMed  Google Scholar 

  27. Huda W, Mettler FA. Volume CT dose index and dose-length product displayed during CT: what good are they? Radiology. 2011;258(1):236–42.

    Article  PubMed  Google Scholar 

  28. Numkarunarunrote N, Chaitusaney T. Anterior tibial translation sign: factors affecting interpretation of anterior cruciate ligament tear. J Med Assoc Thai. 2015;98(Suppl 1):S57–62.

    PubMed  Google Scholar 

  29. Tashiro Y, Okazaki K, Miura H, Matsuda S, Yasunaga T, Hashizume M, et al. Quantitative assessment of rotatory instability after anterior cruciate ligament reconstruction. Am J Sports Med. 2009;37(5):909–16.

    Article  Google Scholar 

  30. Macchiarola L, Jacquet C, Dor J, Zaffagnini S, Mouton C, Seil R. Side-to-side anterior tibial translation on monopodal weightbearing radiographs as a sign of knee decompensation in ACL-deficient knees. Knee Surg Sports Traumatol Arthrosc. 2022;30(5):1691–9.

    Article  Google Scholar 

  31. Schmitz RJ, Kim H, Shultz SJ. Effect of axial load on anterior tibial translation when transitioning from non-weight bearing to weight bearing. Clin Biomech (Bristol, Avon). 2010;25(1):77–82.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hollis JM, Pearsall AW, Niciforos PG. Change in meniscal strain with anterior cruciate ligament injury and after reconstruction. Am J Sports Med. 2000;28(5):700–4.

    Article  CAS  Google Scholar 

  33. Li G, Moses JM, Papannagari R, Pathare NP, DeFrate LE, Gill TJ. Anterior cruciate ligament deficiency alters the in vivo motion of the tibiofemoral cartilage contact points in both the anteroposterior and mediolateral directions. J Bone Joint Surg Am. 2006;88(8):1826–34.

    Article  PubMed  Google Scholar 

  34. Bedi A, Musahl V, Lane C, Citak M, Warren RF, Pearle AD. Lateral compartment translation predicts the grade of pivot shift: a cadaveric and clinical analysis. Knee Surg Sports Traumatol Arthrosc. 2010;18(9):1269–76.

    Article  Google Scholar 

  35. Mitchell BC, Siow MY, Bastrom T, Bomar JD, Pennock AT, Parvaresh K, et al. Coronal lateral collateral ligament sign: a novel magnetic resonance imaging sign for identifying anterior cruciate ligament-deficient knees in adolescents and summarizing the extent of anterior tibial translation and femorotibial internal rotation. Am J Sports Med. 2021;49(4):928–34.

    Article  PubMed  Google Scholar 

  36. Thawait GK, Demehri S, AlMuhit A, Zbijweski W, Yorkston J, Del Grande F, et al. Extremity cone-beam CT for evaluation of medial tibiofemoral osteoarthritis: Initial experience in imaging of the weight-bearing and non-weight-bearing knee. Eur J Radiol. 2015;84(12):2564–70.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Barg A, Bailey T, Richter M, de Cesar NC, Lintz F, Burssens A, et al. Weightbearing computed tomography of the foot and ankle: emerging technology topical review. Foot Ankle Int. 2018;39(3):376–86.

    Article  PubMed  Google Scholar 

  38. Lôbo CFT, Bordalo-Rodrigues M, Group W-BCTIS. Weight-bearing cone beam CT scans and its uses in ankle, foot, and knee: an update article. Acta Ortop Bras. 2021;29(2):105–10.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Espregueira-Mendes J, Pereira H, Sevivas N, Passos C, Vasconcelos JC, Monteiro A, et al. Assessment of rotatory laxity in anterior cruciate ligament-deficient knees using magnetic resonance imaging with Porto-knee testing device. Knee Surg Sports Traumatol Arthrosc. 2012;20(4):671–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RVL and SZ: conceived the study and wrote the first draft of the manuscript.

CFTL: helped with manuscript writing and image selection.

AG and ALG-S: helped with final manuscript review.

RGG: helped in study design and with final manuscript review.

PVPH: image selection and final review of the manuscript.

CPH: helped in study design, data analysis, and final review.

Corresponding author

Correspondence to Renata Vidal Leão.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leão, R.V., Zelada, S.R.B., Lobo, C.F.T. et al. Assessment of knee instability in ACL-injured knees using weight-bearing computed tomography (WBCT): a novel protocol and preliminary results. Skeletal Radiol (2024). https://doi.org/10.1007/s00256-024-04562-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00256-024-04562-1

Keywords

Navigation