Skip to main content
Log in

MRI of patellar stabilizers: Anatomic visibility, inter-reader reliability, and intra-reader reproducibility of primary and secondary ligament anatomy

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To compare MRI features of medial and lateral patellar stabilizers in patients with and without patellar instability.

Methods

Retrospective study of 196 patients (mean age, 33.1 ± 18.5 years; 119 women) after diagnosis of patellar instability (cohort-1, acute patellar dislocation; cohort-2, chronic patellar maltracking) or no patellar instability (cohort-3, acute ACL rupture; cohort-4, chronic medial meniscus tear). On MRI, four medial and four lateral stabilizers were evaluated for visibility and injury by three readers independently. Inter- and intra-reader agreement was determined.

Results

Medial and lateral patellofemoral ligaments (MPFL and LPFL) were mostly or fully visualized in all cases (100%). Of the secondary patellar stabilizers, the medial patellotibial ligament was mostly or fully visualized in 166 cases (84.7%). Other secondary stabilizers were mostly or fully visualized in only a minority of cases (range, 0.5–32.1%). Injury scores for all four medial stabilizers were higher in patients with acute patellar dislocation than the other 3 cohorts (p < .05). Visibility inter- and intra-reader agreement was good for medial stabilizers (κ 0.61–0.78) and moderate-to-good for lateral stabilizers (κ 0.40–0.72). Injury inter- and intra-reader agreement was moderate-to-excellent for medial stabilizers (κ 0.43–0.90) and poor-to-moderate for lateral stabilizers (κ 0–0.50).

Conclusion

The MPFL and LPFL were well visualized on MRI while the secondary stabilizers were less frequently visualized. The secondary stabilizers were more frequently visualized medially than laterally, and patellotibial ligaments were more frequently visualized compared to the other secondary stabilizers. Injury to the medial stabilizers was more common with acute patellar dislocation than with chronic patellar maltracking or other knee injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MRI:

Magnetic resonance imaging

ACL:

Anterior cruciate ligament

MPFL:

Medial patellofemoral ligament

MPTL:

Medial patellotibial ligament

MPML:

Medial patellomeniscal ligament

MQTFL:

Medial quadriceps tendon femoral ligament

LPFL:

Lateral patellofemoral ligament

LPML:

Lateral patellomeniscal ligament

LPTL:

Lateral patellotibial ligament

ICD:

International Classification of Disease

PACS:

Picture archiving and communication system

TR:

Repetition time

TE:

Time to echo

PD:

Proton density

FS:

Fat-suppressed

ANOVA:

Analysis of variance

References

  1. LaPrade RF, Engebretsen AH, Ly TV, Johansen S, Wentorf FA, Engebretsen L. The anatomy of the medial part of the knee. J Bone Joint Surg Am. 2007;89(9):2000–10.

    Article  PubMed  Google Scholar 

  2. Philippot R, Boyer B, Testa R, Farizon F, Moyen B. The role of the medial ligamentous structures on patellar tracking during knee flexion. Knee Surg Sports Traumatol Arthrosc. 2012;20(2):331–6.

    Article  PubMed  CAS  Google Scholar 

  3. Watts RE, Gorbachova T, Fritz RC, et al. Patellar Tracking: An Old Problem with New Insights. Radiographics. 2023;43(6):e220177.

    Article  PubMed  Google Scholar 

  4. Desio SM, Burks RT, Bachus KN. Soft tissue restraints to lateral patellar translation in the human knee. Am J Sports Med. 1998;26(1):59–65.

    Article  PubMed  CAS  Google Scholar 

  5. Hautamaa PV, Fithian DC, Kaufman KR, Daniel DM, Pohlmeyer AM. Medial soft tissue restraints in lateral patellar instability and repair. Clin Orthop Relat Res. 1998;349:174–82.

    Article  Google Scholar 

  6. Huddleston HP, Chahla J, Gursoy S, et al. A Comprehensive Description of the Lateral Patellofemoral Complex: Anatomy and Anisometry. Am J Sports Med. 2022;50(4):984–93.

    Article  PubMed  Google Scholar 

  7. Marberry K, Boehm K, Korpi F, Johnson J, Kondrashov P. Anatomical and Radiographic Characterization of the Lateral Patellofemoral Ligament of the Knee. Mo Med. 2020;117(5):469–74.

    PubMed  PubMed Central  Google Scholar 

  8. Merican AM, Sanghavi S, Iranpour F, Amis AA. The structural properties of the lateral retinaculum and capsular complex of the knee. J Biomech. 2009;42(14):2323–9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kaleka CC, Aihara LJ, Rodrigues A, de Medeiros SF, de Oliveira VM, de Paula Leite Cury R. Cadaveric study of the secondary medial patellar restraints: patellotibial and patellomeniscal ligaments. Knee Surg Sports Traumatol Arthrosc. 2017;25(1):144–51.

  10. Hinckel BB, Gobbi RG, Demange MK, et al. Medial Patellofemoral Ligament, Medial Patellotibial Ligament, and Medial Patellomeniscal Ligament: Anatomic, Histologic, Radiographic, and Biomechanical Study. Arthroscopy. 2017;33(10):1862–73.

    Article  PubMed  Google Scholar 

  11. Hinckel BB, Gobbi RG, Kaleka CC, Camanho GL, Arendt EA. Medial patellotibial ligament and medial patellomeniscal ligament: anatomy, imaging, biomechanics, and clinical review. Knee Surg Sports Traumatol Arthrosc. 2018;26(3):685–96.

    Article  PubMed  Google Scholar 

  12. Hinckel BB, Lipinski L, Arendt EA. Concepts of the Distal Medial Patellar Restraints: Medial Patellotibial Ligament and Medial Patellomeniscal Ligament. Sports Med Arthrosc Rev. 2019;27(4):143–9.

    Article  PubMed  Google Scholar 

  13. Kruckeberg BM, Chahla J, Moatshe G, et al. Quantitative and Qualitative Analysis of the Medial Patellar Ligaments: An Anatomic and Radiographic Study. Am J Sports Med. 2018;46(1):153–62.

    Article  PubMed  Google Scholar 

  14. Ebied AM, El-Kholy W. Reconstruction of the medial patello-femoral and patello-tibial ligaments for treatment of patellar instability. Knee Surg Sports Traumatol Arthrosc. 2012;20(5):926–32.

    Article  PubMed  Google Scholar 

  15. Nelitz M, Dreyhaupt J, Williams SRM. Anatomic reconstruction of the medial patellofemoral ligament in children and adolescents using a pedicled quadriceps tendon graft shows favourable results at a minimum of 2-year follow-up. Knee Surg Sports Traumatol Arthrosc. 2018;26(4):1210–5.

    PubMed  Google Scholar 

  16. Ellera Gomes JL, Stigler Marczyk LR, César de César P, Jungblut CF. Medial patellofemoral ligament reconstruction with semitendinosus autograft for chronic patellar instability: a follow-up study. Arthroscopy. 2004;20(2):147–51.

  17. Drez D, Edwards TB, Williams CS. Results of medial patellofemoral ligament reconstruction in the treatment of patellar dislocation. Arthroscopy. 2001;17(3):298–306.

    Article  PubMed  Google Scholar 

  18. Zaffagnini S, Grassi A, Marcheggiani Muccioli GM, et al. Medial patellotibial ligament (MPTL) reconstruction for patellar instability. Knee Surg Sports Traumatol Arthrosc. 2014;22(10):2491–8.

    Article  PubMed  Google Scholar 

  19. Giordano M, Falciglia F, Aulisa AG, Guzzanti V. Patellar dislocation in skeletally immature patients: semitendinosous and gracilis augmentation for combined medial patellofemoral and medial patellotibial ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2012;20(8):1594–8.

    Article  PubMed  Google Scholar 

  20. Baumann CA, Pratte EL, Sherman SL, Arendt EA, Hinckel BB. Reconstruction of the medial patellotibial ligament results in favorable clinical outcomes: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2018;26(10):2920–33.

    Article  PubMed  Google Scholar 

  21. Hinckel BB, Dean RS, Ahlgren CD, Cavinatto LM. Combined Medial Patellofemoral Ligament, Medial Quadriceps Tendon-Femoral Ligament, and Medial Patellotibial Ligament Reconstruction for Patellar Instability: A Technical Note. Arthrosc Tech. 2023;12(3):e329–35.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Aicale R, Maffulli N. Combined medial patellofemoral and medial patellotibial reconstruction for patellar instability: a PRISMA systematic review. J Orthop Surg Res. 2020;15(1):529.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Maffulli N, Aicale R, D’Addona A, Young DA, Kader DF, Oliva F. Combined medial patellofemoral and patellotibial reconstruction with soft tissue fixation in recurrent patellar dislocation. Injury. 2020;51(8):1867–73.

    Article  PubMed  Google Scholar 

  24. Sobhy MH, Mahran MA, Kamel EM. Midterm results of combined patellofemoral and patellotibial ligaments reconstruction in recurrent patellar dislocation. Eur J Orthop Surg Traumatol. 2013;23(4):465–70.

    Article  PubMed  Google Scholar 

  25. Moatshe G, Cram TR, Chahla J, Cinque ME, Godin JA, LaPrade RF. Medial Patellar Instability: Treatment and Outcomes. Orthop J Sports Med. 2017;5(4):2325967117699816.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Saper M. Lateral Patellofemoral Ligament Reconstruction With a Gracilis Allograft. Arthrosc Tech. 2018;7(4):e405–10.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sawyer GA, Cram T, LaPrade RF. Lateral patellotibial ligament reconstruction for medial patellar instability. Arthrosc Tech. 2014;3(5):e547–50.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Beckert M, Crebs D, Nieto M, Gao Y, Albright J. Lateral patellofemoral ligament reconstruction to restore functional capacity in patients previously undergoing lateral retinacular release. World J Clin Cases. 2016;4(8):202–6.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sanchis-Alfonso V, Montesinos-Berry E, Monllau JC, Merchant AC. Results of isolated lateral retinacular reconstruction for iatrogenic medial patellar instability. Arthroscopy. 2015;31(3):422–7.

    Article  PubMed  Google Scholar 

  30. Dirim B, Haghighi P, Trudell D, Portes G, Resnick D. Medial patellofemoral ligament: cadaveric investigation of anatomy with MRI, MR arthrography, and histologic correlation. AJR Am J Roentgenol. 2008;191(2):490–8.

    Article  PubMed  Google Scholar 

  31. Thawait SK, Soldatos T, Thawait GK, Cosgarea AJ, Carrino JA, Chhabra A. High resolution magnetic resonance imaging of the patellar retinaculum: normal anatomy, common injury patterns, and pathologies. Skeletal Radiol. 2012;41(2):137–48.

    Article  PubMed  Google Scholar 

  32. Miller RH, Azar FM. Knee injuries. In: Azar FM, Canale ST, Beaty JH, editors. Campbell’s Operative Orthopaedics. 14th ed, Elsevier; 2021. p. 2198–373.

    Google Scholar 

  33. Kawahara Y, Koike H, Nonoshita M, et al. The infrapatellar plica of the knee: analysis of relationship with femoral trochlear chondrosis using radiographs and 3.0-T MRI. Skelet Radiol. 2023;52(8):1535–44.

  34. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74.

    Article  PubMed  CAS  Google Scholar 

  35. Deshmukh S, Tegtmeyer K, Kovour M, Ahlawat S, Samet J. Diagnostic contribution of contrast-enhanced 3D MR imaging of peripheral nerve pathology. Skeletal Radiol. 2021;50(12):2509–18.

    Article  PubMed  Google Scholar 

  36. Bharadwaj UU, Coy A, Motamedi D, et al. CT-like MRI: a qualitative assessment of ZTE sequences for knee osseous abnormalities. Skelet Radiol. 2022;51(8):1585–94.

    Article  Google Scholar 

  37. Samelis PV, Papagrigorakis E, Mavrogenis A, Savvidou O, Koulouvaris P. Isolated Avulsion Fracture of Patellar Attachment of Medial Patellotibial and Medial Patellomeniscal Ligaments in the Presence of Trochlear Dysplasia: An Indication for Acute Surgical Repair. Cureus. 2019;11(11):e6205.

    PubMed  PubMed Central  Google Scholar 

  38. Tompkins MA, Rohr SR, Agel J, Arendt EA. Anatomic patellar instability risk factors in primary lateral patellar dislocations do not predict injury patterns: an MRI-based study. Knee Surg Sports Traumatol Arthrosc. 2018;26(3):677–84.

    Article  PubMed  Google Scholar 

  39. Shah JN, Howard JS, Flanigan DC, Brophy RH, Carey JL, Lattermann C. A systematic review of complications and failures associated with medial patellofemoral ligament reconstruction for recurrent patellar dislocation. Am J Sports Med. 2012;40(8):1916–23.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ambra LF, Franciozi CE, Phan A, Faloppa F, Gomoll AH. Isolated MPTL reconstruction fails to restore lateral patellar stability when compared to MPFL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2021;29(3):793–9.

    Article  PubMed  Google Scholar 

  41. Garth WP, Connor GS, Futch L, Belarmino H. Patellar subluxation at terminal knee extension: isolated deficiency of the medial patellomeniscal ligament. J Bone Joint Surg Am. 2011;93(10):954–62.

    Article  PubMed  Google Scholar 

  42. Fulkerson JP, Edgar C. Medial quadriceps tendon-femoral ligament: surgical anatomy and reconstruction technique to prevent patella instability. Arthrosc Tech. 2013;2(2):e125–8.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Miller PR, Klein RM, Teitge RA. Medial dislocation of the patella. Skelet Radiol. 1991;20(6):429–31.

    Article  CAS  Google Scholar 

  44. Unal B, Hinckel BB, Sherman SL, Lattermann C. Comparison of Lateral Retinaculum Release and Lengthening in the Treatment of Patellofemoral Disorders. Am J Orthop (Belle Mead NJ). 2017;46(5):224–8.

    PubMed  Google Scholar 

  45. Teitge RA, Torga SR. Lateral patellofemoral ligament reconstruction. Arthroscopy. 2004;20(9):998–1002.

    Article  PubMed  Google Scholar 

  46. Hughston JC, Flandry F, Brinker MR, Terry GC, Mills JC. Surgical correction of medial subluxation of the patella. Am J Sports Med. 1996;24(4):486–91.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Boutin.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of interest

The authors declare no competing interests, while noting disclosures for two authors:

• Disclosures for K.G. Shea: Advisory board for Sarcio, Inc., nView, Inc, and Medeloop, Inc.

• Disclosures for S.L. Sherman: Board or committee member of AAOS, ACL Study Group, American Orthopaedic Society for Sports Medicine, Arthroscopy Association of North America, Biologics Alliance, Icarus Bracing, International Cartilage Regeneration & Joint Preservation Society, International Society of Arthroscopy, Knee Surgery, and Orthopaedic Sports Medicine, International Sports Medicine Fellows Conference, Patellofemoral Foundation, Reparel, Sarcio, Sparta Biomedical, and Vericel; paid consultant or paid speaker for Arcuro, Inc, Arthrex, Inc, CONMED, Depuy J&J, Joint Restoration Foundation, Kinamed, LifeNet, Linksys, NewClip, Ostesys, and Smith & Nephew; stock options in Vivorte, Reparel, and Sarcio; editorial or governing board member for Arthroscopy, Current Reviews in Musculoskeletal Medicine, and Video Journal of Sports Medicine.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 546 KB)

Supplementary file2 (DOCX 14.8 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zandee van Rilland, E., Payne, S.R., Gorbachova, T. et al. MRI of patellar stabilizers: Anatomic visibility, inter-reader reliability, and intra-reader reproducibility of primary and secondary ligament anatomy. Skeletal Radiol 53, 555–566 (2024). https://doi.org/10.1007/s00256-023-04432-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-023-04432-2

Keywords

Navigation