Skip to main content

Advertisement

Log in

An association between femoral trochlear morphology and non-contact anterior cruciate ligament total rupture: a retrospective MRI study

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Introduction

The present study aims to investigate the association of the femoral trochlear morphology with the risk of ACL injury and whether this can be considered an additional risk factor in this clinical table.

Materials and methods

This is a retrospective case–control study with 93 patients, 41 patients with ACL total rupture (ACL-TR), and 52 patients without ACL injury who underwent knee magnetic resonance imaging (MRI) between January 2013 and January 2016. The femoral trochlear morphology was evaluated at the proximal and distal levels from the axial knee MRI. The morphological features of the trochlea using sulcus angle, sulcus depth, condylar heights, trochlear sulcus height, percentage of condyles and trochlear sulcus height to transepicondylar width, and lateral and medial trochlear inclination were evaluated. The notch width index was measured on the coronal MR images for notch stenos.

Results

ACL-TR group had a significantly higher sulcus angle (p = 0.00–0.001) and lower sulcus depth (p = 0.00–0.002) than the control group at both levels. Femoral trochlea had morphometric differences between genders. NWI was lower in the ACL-TR group than the control group (control 0.273; ACL-TR 0.247), and there was a statistically significant difference (p = 0.00).

Conclusion

This study was shown that the difference in morphology between the trochlear sulcus of patients with normal and ACL injuries should be taken into account in order to increase awareness of ACL injuries. We observed that mild trochlear dysplasia may cause intercondylar notch stenosis rather than changing the localization of the patella. Studies are needed regarding the effect of trochlear dysplasia on ACL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Boden BP, Dean GS, Feagin JA Jr, Garrett WE Jr. Mechanisms of anterior cruciate ligament injury. Orthopedics. 2000;23(6):573–8. https://doi.org/10.3928/0147-7447-20000601-15.

    Article  CAS  PubMed  Google Scholar 

  2. Yu B, Garrett WE. Mechanisms of non-contact ACL injuries. Br J Sports Med. 2007;41(Suppl 1):i47–51. bjsm.2007.03719/bjsm.2007.037192.

  3. Griffin LY, Agel J, Albohm MJ, et al. Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. J Am Acad Orthop Surg. 2000;8(3):141–50. https://doi.org/10.5435/00124635-200005000-00001.

    Article  CAS  PubMed  Google Scholar 

  4. Escamilla RF, Macleod TD, Wilk KE, Paulos L, Andrews JR. Anterior cruciate ligament strain and tensile forces for weightbearing and non-weight-bearing exercises: a guide to exercise selection. J Orthop Sports Phys Ther. 2012;42(3):208–20. https://doi.org/10.2519/jospt.2012.3768.

    Article  PubMed  Google Scholar 

  5. Li H, Zeng C, Wang Y, et al. Association between magnetic resonance imaging-measured intercondylar notch dimensions and anterior cruciate ligament injury: a meta-analysis. Arthroscopy. 2018;34(3):889–900. https://doi.org/10.1016/j.arthro.2017.08.299.

    Article  PubMed  Google Scholar 

  6. Zeng C, Yang T, Wu S, et al. Is posterior tibial slope associated with noncontact anterior cruciate ligament injury? Knee Surg Sports Traumatol Arthrosc. 2016;24(3):830–7. https://doi.org/10.1007/s00167-014-3382-x.

    Article  PubMed  Google Scholar 

  7. Botchu R, Obaid H, Rennie WJ. Correlation between trochlear dysplasia and anterior cruciate ligament injury. J Orthop Surg. 2013;21(2):185–8. https://doi.org/10.1177/230949901302100214.

    Article  Google Scholar 

  8. Chen M, Qin L, Li M, Shen J. Correlation analysis between femoral trochlear dysplasia and anterior cruciate ligament injury based on CT measurement. Quant Imaging Med Surg. 2020;10(4):847–52. https://doi.org/10.21037/qims.2020.03.15.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ntagiopoulos PG, Bonin N, Sonnery-Cottet B, Badet R, Dejour D. The incidence of trochlear dysplasia in anterior cruciate ligament tears. Int Orthop. 2014;38(6):1269–75. https://doi.org/10.1007/s00264-014-2291-4.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dejour H, Walch G, Nove-Josserand L, Guier C. Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc. 1994;2(1):19–26. https://doi.org/10.1007/bf01552649.

    Article  CAS  PubMed  Google Scholar 

  11. Feller JA, Amis AA, Andrish JT, Arendt EA, Erasmus PJ, Powers CM. Surgical biomechanics of the patellofemoral joint. Arthroscopy. 2007;23(5):542–53. https://doi.org/10.1016/j.arthro.2007.03.006.

    Article  PubMed  Google Scholar 

  12. Botchu R, Obaid H, Rennie WJ. Correlation between trochlear dysplasia and the notch index. J Orthop Surg (Hong Kong). 2013;21(3):290–3. https://doi.org/10.1177/230949901302100305.

    Article  Google Scholar 

  13. Fleming BC, Ohlen G, Renstrom PA, Peura GD, Beynnon BD, Badger GJ. The effects of compressive load and knee joint torque on peak anterior cruciate ligament strains. Am J Sports Med. 2003;31(5):701–7. https://doi.org/10.1177/03635465030310051101.

    Article  PubMed  Google Scholar 

  14. Ha TP, Li KC, Beaulieu CF, et al. Anterior cruciate ligament injury: fast spin-echo MR imaging with arthroscopic correlation in 217 examinations. AJR Am J Roentgenol. 1998;170:1215–9. https://doi.org/10.2214/ajr.170.5.9574587.

    Article  CAS  PubMed  Google Scholar 

  15. Diederichs G, Issever AS, Scheffler S. MR imaging of patellar instability: injury patterns and assessment of risk factors. RadioGraphics. 2010;30:961–81. https://doi.org/10.1148/rg.304095755.

    Article  PubMed  Google Scholar 

  16. Charles MD, Haloman S, Chen L, Ward SR, Fithian D, Afra R. Magnetic resonance imaging-based topographical differences between control and recurrent patellofemoral instability patients. Am J Sports Med. 2013;41(2):374–84. https://doi.org/10.1177/0363546512472441.

    Article  PubMed  Google Scholar 

  17. Duran S, Cavusoglu M, Kocadal O, Sakman B. Association between trochlear morphology and chondromalacia patella: an MRI study. Clin Imaging. 2017;41:7–10. https://doi.org/10.1016/j.clinimag.2016.09.008.

    Article  PubMed  Google Scholar 

  18. Pfirrmann CW, Zanetti M, Romero J, Hodler J. Femoral trochlear dysplasia: MR findings. Radiology. 2000;216(3):858–64. https://doi.org/10.1148/radiology.216.3.r00se38858.

    Article  CAS  PubMed  Google Scholar 

  19. Tsavalas N, Katonis P, Karantanas AH. Knee joint anterior malalignment and patellofemoral osteoarthritis: an MRI study. Eur Radiol. 2012;22(2):418–28. https://doi.org/10.1007/s00330-011-2275-3.

    Article  PubMed  Google Scholar 

  20. Tuna BK, Semiz-Oysu A, Pekar B, Bukte Y, Hayirlioglu A. The association of patellofemoral joint morphology with chondromalacia patella: a quantitative MRI analysis. Clin Imaging. 2014;38(4):495–8. https://doi.org/10.1016/j.clinimag.2014.01.012.

    Article  PubMed  Google Scholar 

  21. Bisson LJ, Gurske-DePerio J. Axial and sagittal knee geometry as a risk factor for noncontact anterior cruciate ligament tear: a case-control study. Arthroscopy. 2010;26(7):901–6. https://doi.org/10.1016/j.arthro.2009.12.012.

    Article  PubMed  Google Scholar 

  22. Nelitz M, Lippacher S, Reichel H, Dornacher D. Evaluation of trochlear dysplasia using MRI: correlation between the classification system of Dejour and objective parameters of trochlear dysplasia. Knee Surg Sports Traumatol Arthrosc. 2014;22(1):120–7. https://doi.org/10.1007/s00167-012-2321-y.

    Article  CAS  PubMed  Google Scholar 

  23. Biedert RM, Bachmann M. Anterior-posterior trochlear measurements of normal and dysplastic trochlea by axial magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc. 2009;17(10):1225–30. https://doi.org/10.1007/s00167-009-0824-y.

    Article  PubMed  Google Scholar 

  24. Carrillon Y, Abidi H, Dejour D, Fantino O, Moyen B, Tran-Minh VA. Patellar instability: assessment on MR images by measuring the lateral trochlear inclination-initial experience. Radiology. 2000;216(2):582–5. https://doi.org/10.1148/radiology.216.2.r00au07582.

    Article  CAS  PubMed  Google Scholar 

  25. Stein V, Li L, Guermazi A, et al. The relation of femoral notch stenosis to ACL tears in persons with knee osteoarthritis. Osteoarthr Cartil. 2010;18:192–9. https://doi.org/10.1016/j.joca.2009.09.006.

    Article  CAS  Google Scholar 

  26. Hoteya K, Kato Y, Motojima S, et al. Association between intercondylar notch narrowing and bilateral anterior cruciate ligament injuries in athletes. Arch Orthop Trauma Surg. 2011;131:371–6. https://doi.org/10.1007/s00402-010-1254-5.

    Article  PubMed  Google Scholar 

  27. Souryal TO, Freeman TR. Intercondylar notch size and anterior cruciate ligament injuries in athletes. A prospective study. Am J Sports Med. 1993;21:535–9. https://doi.org/10.1177/036354659302100410.

    Article  CAS  PubMed  Google Scholar 

  28. Amis AA, Oguz C, Bull AM, Senavongse W, Dejour D. The effect of trochleoplasty on patellar stability and kinematics: a biomechanical study in vitro. J Bone Joint Surg (Br). 2008;90(7):864–9. https://doi.org/10.1302/0301-620X.90B7.20447.

    Article  CAS  Google Scholar 

  29. Van Haver A, De Roo K, De Beule M, et al. The effect of trochlear dysplasia on patellofemoral biomechanics: a cadaveric study with simulated trochlear deformities. Am J Sports Med. 2015;43(6):1354–61. https://doi.org/10.1177/0363546515572143.

    Article  PubMed  Google Scholar 

  30. Dejour D, Le Coultre B. Osteotomies in patello-femoral instabilities. Sports Med Arthrosc. 2007;15(1):39–46. https://doi.org/10.1097/JSA.0b013e31803035ae.

    Article  PubMed  Google Scholar 

  31. Carter JC, Sturnick DR, Vacek PM, et al. Relationship between geometry of the extensor mechanism of the knee and risk of anterior cruciate ligament injury. J Orthop Res. 2017;35(5):965–73. https://doi.org/10.1002/jor.23366.

    Article  CAS  PubMed  Google Scholar 

  32. Salzmann GM, Weber TS, Spang JT, Imhoff AB, Schöttle PB. Comparison of native axial radiographs with axial MR imaging for determination of the trochlear morphology in patients with trochlear dysplasia. Arch Orthop Trauma Surg. 2010;130(3):335–40. https://doi.org/10.1007/s00402-009-0912-y.

    Article  PubMed  Google Scholar 

  33. Bollier M, Fulkerson JP. The role of trochlear dysplasia in patellofemoral instability. J Am Acad Orthop Surg. 2011;19(1):8–16. https://doi.org/10.5435/00124635-201101000-00002.

    Article  PubMed  Google Scholar 

  34. Wright SJ, Boymans TA, Grimm B, Miles AW, Kessler O. Strong correlation between the morphology of the proximal femur and the geometry of the distal femoral trochlea. Knee Surg Sports Traumatol Arthrosc. 2014;22(12):2900–10. https://doi.org/10.1007/s00167-014-3343-4.

    Article  PubMed  Google Scholar 

  35. Chhabra A, Subhawong TK, Carrino JA. A systematized MRI approach to evaluating the patellofemoral joint. Skelet Radiol. 2011;40(4):375–87. https://doi.org/10.1007/s00256-010-0909-1.

    Article  Google Scholar 

  36. Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492–501. https://doi.org/10.1177/0363546504269591.

    Article  PubMed  Google Scholar 

  37. Van Haver A, De RK, De BM, et al. Semi-automated landmark-based 3D analysis reveals new morphometric characteristics in the trochlear dysplastic femur. Knee Surg Sports Traumatol Arthrosc. 2014;22:2698–708. https://doi.org/10.1007/s00167-013-2573-1.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to our gratitude to Neslihan Onder Ozdemir (PhD in the University of Sheffield, UK) for doing the article’s “spell check” and “grammar check.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sefa Isıklar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This study was approved by the Ethics Committee of Clinical Investigations of the Bursa Uludag University Faculty of Medicine (2015-17/19, 29.09.2015). All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

As this study was retrospective, radiological images were used with the approval of the ethics committee without obtaining an informed consent form.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isıklar, S., Ozdemir, S.T. & Gokalp, G. An association between femoral trochlear morphology and non-contact anterior cruciate ligament total rupture: a retrospective MRI study. Skeletal Radiol 50, 1441–1454 (2021). https://doi.org/10.1007/s00256-020-03706-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-020-03706-3

Keywords

Navigation