Skip to main content

Advertisement

Log in

Intravoxel incoherent motion diffusion-weighted magnetic resonance imaging of focal vertebral bone marrow lesions: initial experience of the differentiation of nodular hyperplastic hematopoietic bone marrow from malignant lesions

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To evaluate the ability of intravoxel incoherent motion (IVIM) diffusion-weighted magnetic resonance imaging (MRI) parameters to differentiate nodular hyperplastic hematopoietic bone marrow (HHBM) from malignant vertebral bone marrow lesions (VBMLs).

Materials and methods

A total of 33 patients with 58 VBMLs, including 9 nodular HHBM lesions, 39 bone metastases, and 10 myelomas, were retrospectively assessed. All diagnoses were confirmed either pathologically or via image assessment. IVIM diffusion-weighted MRI with 11 b values (from 0 to 800 s/mm2) were obtained using a 3.0-T MR imager. The apparent diffusion coefficient (ADC), pure diffusion coefficient (D), perfusion fraction (f), and pseudodiffusion coefficient (D*) were calculated. ADC and IVIM parameters were compared using the Mann–Whitney U test. Receiver operating characteristic (ROC) curve analysis was performed to assess the diagnostic performances of ADC, D, f, and D* in terms of VBML characterization. The diagnostic performance of morphological MR sequences was also assessed for comparison.

Results

The ADC and D values of nodular HHBM were significantly lower than those of malignant VBML (both p values < 0.001), whereas the f value was significantly higher (p < 0.001). However, there were no significant differences in D* between the two groups (p = 0.688). On ROC analysis, the area under the curve (AUC) for D was 1.000, which was significantly larger than that for ADC (AUC = 0.902).

Conclusion

Intravoxel incoherent motion diffusion-weighted MRI can be used to differentiate between nodular HHBM and malignant VBML. The D value was significantly lower for nodular HHBM, and afforded a better diagnostic performance than the ADC, f, and D* values in terms of such differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADC:

Apparent diffusion coefficient

D:

Pure diffusion coefficient

D*:

Pseudodiffusion coefficient

f:

Perfusion fraction

HHBM:

Hyperplastic hematopoietic bone marrow

IVIM:

Intravoxel incoherent motion

VBML:

Vertebral bone marrow lesion

References

  1. Hwang S, Panicek DM. Magnetic resonance imaging of bone marrow in oncology. I. Skeletal Radiol. 2007;36:913–20.

    Article  PubMed  Google Scholar 

  2. Hanrahan CJ, Shah LM. MRI of spinal bone marrow. II. T1-weighted imaging-based differential diagnosis. AJR Am J Roentgenol. 2011;197:1309–21.

    Article  PubMed  Google Scholar 

  3. Vande Berg BC, Malghem J, Lecouvet FE, Maldague B. Classification and detection of bone marrow lesions with magnetic resonance imaging. Skeletal Radiol. 1998;27:529–45.

    Article  CAS  PubMed  Google Scholar 

  4. Daffner RH, Lupetin AR, Dash N, Deeb ZL, Sefczek RJ, Schapiro RL. MRI in the detection of malignant infiltration of bone marrow. AJR Am J Roentgenol. 1986;146:353–8.

    Article  CAS  PubMed  Google Scholar 

  5. Baur A, Stabler A, Bruning R, et al. Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures. Radiology. 1998;207:349–56.

    Article  CAS  PubMed  Google Scholar 

  6. Shigematsu Y, Hirai T, Kawanaka K, et al. Distinguishing imaging features between spinal hyperplastic hematopoietic bone marrow and bone metastasis. AJNR Am J Neuroradiol. 2014;35:2013–20.

    Article  CAS  PubMed  Google Scholar 

  7. Vande Berg BC, Lecouvet FE, Galant C, Simoni P, Malghem J. Normal variants of the bone marrow at MR imaging of the spine. Semin Musculoskelet Radiol. 2009;13:87–96.

    Article  PubMed  Google Scholar 

  8. Bordalo-Rodrigues M, Galant C, Lonneux M, Clause D, Vande Berg BC. Focal nodular hyperplasia of the hematopoietic marrow simulating vertebral metastasis on FDG positron emission tomography. AJR Am J Roentgenol. 2003;180:669–71.

    Article  PubMed  Google Scholar 

  9. Iima M, Le Bihan D. Clinical intravoxel incoherent motion and diffusion MR imaging: past, present, and future. Radiology. 2016;278:13–32.

    Article  PubMed  Google Scholar 

  10. Yoon JH, Lee JM, Yu MH, Kiefer B, Han JK, Choi BI. Evaluation of hepatic focal lesions using diffusion-weighted MR imaging: comparison of apparent diffusion coefficient and intravoxel incoherent motion-derived parameters. J Magn Reson Imaging. 2014;39:276–85.

    Article  PubMed  Google Scholar 

  11. Bourillon C, Rahmouni A, Lin C, et al. Intravoxel incoherent motion diffusion-weighted imaging of multiple myeloma lesions: correlation with whole-body dynamic contrast agent-enhanced MR imaging. Radiology. 2015;277:773–83.

    Article  PubMed  Google Scholar 

  12. Iima M, Yano K, Kataoka M, et al. Quantitative non-gaussian diffusion and intravoxel incoherent motion magnetic resonance imaging: differentiation of malignant and benign breast lesions. Invest Radiol. 2015;50:205–11.

    Article  PubMed  Google Scholar 

  13. Kang KM, Lee JM, Yoon JH, Kiefer B, Han JK, Choi BI. Intravoxel incoherent motion diffusion-weighted MR imaging for characterization of focal pancreatic lesions. Radiology. 2014;270:444–53.

    Article  PubMed  Google Scholar 

  14. Bokacheva L, Kaplan JB, Giri DD, et al. Intravoxel incoherent motion diffusion-weighted MRI at 3.0 T differentiates malignant breast lesions from benign lesions and breast parenchyma. J Magn Reson Imaging. 2014;40:813–23.

    Article  PubMed  Google Scholar 

  15. Liu C, Liang C, Liu Z, Zhang S, Huang B. Intravoxel incoherent motion (IVIM) in evaluation of breast lesions: comparison with conventional DWI. Eur J Radiol. 2013;82:e782–9.

    Article  PubMed  Google Scholar 

  16. Sumi M, Van Cauteren M, Sumi T, Obara M, Ichikawa Y, Nakamura T. Salivary gland tumors: use of intravoxel incoherent motion MR imaging for assessment of diffusion and perfusion for the differentiation of benign from malignant tumors. Radiology. 2012;263:770–7.

    Article  PubMed  Google Scholar 

  17. Dopfert J, Lemke A, Weidner A, Schad LR. Investigation of prostate cancer using diffusion-weighted intravoxel incoherent motion imaging. Magn Reson Imaging. 2011;29:1053–8.

    Article  PubMed  Google Scholar 

  18. Wang LL, Lin J, Liu K, et al. Intravoxel incoherent motion diffusion-weighted MR imaging in differentiation of lung cancer from obstructive lung consolidation: comparison and correlation with pharmacokinetic analysis from dynamic contrast-enhanced MR imaging. Eur Radiol. 2014;24:1914–22.

    Article  PubMed  Google Scholar 

  19. Zhang SX, Jia QJ, Zhang ZP, et al. Intravoxel incoherent motion MRI: emerging applications for nasopharyngeal carcinoma at the primary site. Eur Radiol. 2014;24:1998–2004.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Koh DM, Collins DJ, Orton MR. Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. AJR Am J Roentgenol. 2011;196:1351–61.

    Article  PubMed  Google Scholar 

  21. Carroll KW, Feller JF, Tirman PF. Useful internal standards for distinguishing infiltrative marrow pathology from hematopoietic marrow at MRI. J Magn Reson Imaging. 1997;7:394–8.

    Article  CAS  PubMed  Google Scholar 

  22. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology. 1988;168:497–505.

    Article  PubMed  Google Scholar 

  23. Luciani A, Vignaud A, Cavet M, et al. Liver cirrhosis: intravoxel incoherent motion MR imaging–pilot study. Radiology. 2008;249:891–9.

    Article  PubMed  Google Scholar 

  24. Choi KS, Lee JM, Joo I, Han JK, Choi BI. Evaluation of perihilar biliary strictures: does dwi provide additional value to conventional MRI? AJR Am J Roentgenol. 2015;205:789–96.

    Article  PubMed  Google Scholar 

  25. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74.

    Article  CAS  PubMed  Google Scholar 

  26. Nonomura Y, Yasumoto M, Yoshimura R, et al. Relationship between bone marrow cellularity and apparent diffusion coefficient. J Magn Reson Imaging. 2001;13:757–60.

    Article  CAS  PubMed  Google Scholar 

  27. Padhani AR, van Ree K, Collins DJ, D’Sa S, Makris A. Assessing the relation between bone marrow signal intensity and apparent diffusion coefficient in diffusion-weighted MRI. AJR Am J Roentgenol. 2013;200:163–70.

    Article  PubMed  Google Scholar 

  28. Geith T, Schmidt G, Biffar A, et al. Quantitative evaluation of benign and malignant vertebral fractures with diffusion-weighted MRI: what is the optimum combination of b values for ADC-based lesion differentiation with the single-shot turbo spin-echo sequence? AJR Am J Roentgenol. 2014;203:582–8.

    Article  PubMed  Google Scholar 

  29. Biffar A, Baur-Melnyk A, Schmidt GP, Reiser MF, Dietrich O. Quantitative analysis of the diffusion-weighted steady-state free precession signal in vertebral bone marrow lesions. Invest Radiol. 2011;46:601–9.

    Article  PubMed  Google Scholar 

  30. Spuentrup E, Buecker A, Adam G, van Vaals JJ, Guenther RW. Diffusion-weighted MR imaging for differentiation of benign fracture edema and tumor infiltration of the vertebral body. AJR Am J Roentgenol. 2001;176:351–8.

    Article  CAS  PubMed  Google Scholar 

  31. Herneth AM, Philipp MO, Naude J, et al. Vertebral metastases: assessment with apparent diffusion coefficient. Radiology. 2002;225:889–94.

    Article  PubMed  Google Scholar 

  32. Marchand AJ, Hitti E, Monge F, et al. MRI quantification of diffusion and perfusion in bone marrow by intravoxel incoherent motion (IVIM) and non-negative least square (NNLS) analysis. Magn Reson Imaging. 2014;32:1091–6.

    Article  CAS  PubMed  Google Scholar 

  33. Gaeta M, Benedetto C, Minutoli F, et al. Use of diffusion-weighted, intravoxel incoherent motion, and dynamic contrast-enhanced MR imaging in the assessment of response to radiotherapy of lytic bone metastases from breast cancer. Acad Radiol. 2014;21:1286–93.

    Article  PubMed  Google Scholar 

  34. Shah R, Stieltjes B, Andrulis M, et al. Intravoxel incoherent motion imaging for assessment of bone marrow infiltration of monoclonal plasma cell diseases. Ann Hematol. 2013;92:1553–7.

    Article  PubMed  Google Scholar 

  35. Biffar A, Dietrich O, Sourbron S, Duerr HR, Reiser MF, Baur-Melnyk A. Diffusion and perfusion imaging of bone marrow. Eur J Radiol. 2010;76:323–8.

    Article  PubMed  Google Scholar 

  36. Le Bihan D, Turner R. The capillary network: a link between IVIM and classical perfusion. Magn Reson Med. 1992;27:171–8.

    Article  PubMed  Google Scholar 

  37. Bollow M, Knauf W, Korfel A, et al. Initial experience with dynamic MR imaging in evaluation of normal bone marrow versus malignant bone marrow infiltrations in humans. J Magn Reson Imaging. 1997;7:241–50.

    Article  CAS  PubMed  Google Scholar 

  38. Hawighorst H, Libicher M, Knopp MV, Moehler T, Kauffmann GW, Kaick G. Evaluation of angiogenesis and perfusion of bone marrow lesions: role of semiquantitative and quantitative dynamic MRI. J Magn Reson Imaging. 1999;10:286–94.

    Article  CAS  PubMed  Google Scholar 

  39. Moulopoulos LA, Maris TG, Papanikolaou N, Panagi G, Vlahos L, Dimopoulos MA. Detection of malignant bone marrow involvement with dynamic contrast-enhanced magnetic resonance imaging. Ann Oncol. 2003;14:152–8.

    Article  CAS  PubMed  Google Scholar 

  40. Daldrup-Link HE, Henning T, Link TM. MR imaging of therapy-induced changes of bone marrow. Eur Radiol. 2007;17:743–61.

    Article  PubMed  Google Scholar 

  41. Patel J, Sigmund EE, Rusinek H, Oei M, Babb JS, Taouli B. Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: preliminary experience. J Magn Reson Imaging. 2010;31:589–600.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tofts PS, Brix G, Buckley DL, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging. 1999;10:223–32.

    Article  CAS  PubMed  Google Scholar 

  43. Lemke A, Laun FB, Simon D, Stieltjes B, Schad LR. An in vivo verification of the intravoxel incoherent motion effect in diffusion-weighted imaging of the abdomen. Magn Reson Med. 2010;64:1580–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu-Sung Kwack.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S., Kwack, KS., Chung, NS. et al. Intravoxel incoherent motion diffusion-weighted magnetic resonance imaging of focal vertebral bone marrow lesions: initial experience of the differentiation of nodular hyperplastic hematopoietic bone marrow from malignant lesions. Skeletal Radiol 46, 675–683 (2017). https://doi.org/10.1007/s00256-017-2603-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-017-2603-z

Keywords

Navigation