Skip to main content
Log in

The evolution of articular cartilage imaging and its impact on clinical practice

  • Special Issue: Jubilee
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Over the past four decades, articular cartilage imaging has developed rapidly. Imaging now plays a critical role not only in clinical practice and therapeutic decisions but also in the basic research probing our understanding of cartilage physiology and biomechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Darracott J, Vernon-Roberts B. The bony changes in “chondromalacia patellae”. Rheumatol Phys Med. 1971;11(4):175–9.

    CAS  PubMed  Google Scholar 

  2. Li KC, Henkelman RM, Poon PY, Rubenstein J. MR imaging of the normal knee. J Comput Assist Tomogr. 1984;8(6):1147–54.

    CAS  PubMed  Google Scholar 

  3. Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957;16(4):494–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Altman RD, Gold GE. Atlas of individual radiographic features in osteoarthritis, revised. Osteoarthritis Cartilage. 2007; 15 Suppl A:A1-56.

    PubMed  Google Scholar 

  5. Murphy Jr WA, Altman RD. Updated osteoarthritis reference standard. J Rheumatol Suppl. 1995;43:56–9.

    PubMed  Google Scholar 

  6. Altman RD, Hochberg M, Murphy WA Jr, Wolfe F, Lequesne M. Atlas of individual radiographic features in osteoarthritis. Osteoarthritis Cartilage. 1995; 3 Suppl A:3–70.

    PubMed  Google Scholar 

  7. Spector TD, Cooper C, Cushnighan J, Hart DJ, Dieppe PA. A Radiographic Atlas of Knee Osteoarthritis. London: Springer Verlag; 1992.

    Google Scholar 

  8. Ahlback S. Osteoarthrosis of the knee. A radiographic investigation. Acta Radiol Diagn (Stockh). 1968:Suppl 277:277–2.

    Google Scholar 

  9. Altman RD, Fries JF, Bloch DA, Carstens J, Cooke TD, Genant H, et al. Radiographic assessment of progression in osteoarthritis. Arthritis Rheum. 1987;30(11):1214–25.

    CAS  PubMed  Google Scholar 

  10. Verbruggen G, Veys EM. Numerical scoring systems for the anatomic evolution of osteoarthritis of the finger joints. Arthritis Rheum. 1996;39(2):308–20.

    CAS  PubMed  Google Scholar 

  11. Verbruggen G, Veys EM. Erosive and non-erosive hand osteoarthritis. Use and limitations of two scoring systems. Osteoarthritis Cartilage. 2000; 8 Suppl A:S45-54.

    PubMed  Google Scholar 

  12. Scott Jr WW, Lethbridge-Cejku M, Reichle R, Wigley FM, Tobin JD, Hochberg MC. Reliability of grading scales for individual radiographic features of osteoarthritis of the knee. The Baltimore Longitudinal Study of Aging Atlas of Knee Osteoarthritis. Invest Radiol. 1993;28(6):497–501.

    PubMed  Google Scholar 

  13. Croft P. An introduction to the Atlas of Standard Radiographs of Arthritis. Rheumatology (Oxford). 2005; 44 Suppl 4:iv42.

    PubMed  Google Scholar 

  14. Nagaosa Y, Mateus M, Hassan B, Lanyon P, Doherty M. Development of a logically devised line drawing atlas for grading of knee osteoarthritis. Ann Rheum Dis. 2000;59(8):587–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rosenberg TD, Paulos LE, Parker RD, Coward DB, Scott SM. The forty-five-degree posteroanterior flexion weight-bearing radiograph of the knee. J Bone Joint Surg Am. 1988;70(10):1479–83.

    CAS  PubMed  Google Scholar 

  16. Peterfy C, Li J, Zaim S, Duryea J, Lynch J, Miaux Y, et al. Comparison of fixed-flexion positioning with fluoroscopic semi-flexed positioning for quantifying radiographic joint-space width in the knee: test-retest reproducibility. Skeletal Radiol. 2003;32(3):128–32.

    CAS  PubMed  Google Scholar 

  17. Buckland-Wright JC, Ward RJ, Peterfy C, Mojcik CF, Leff RL. Reproducibility of the semiflexed (metatarsophalangeal) radiographic knee position and automated measurements of medial tibiofemoral joint space width in a multicenter clinical trial of knee osteoarthritis. J Rheumatol. 2004;31(8):1588–97.

    PubMed  Google Scholar 

  18. Buckland-Wright JC. Advances in the radiological assessment of rheumatoid arthritis. Br J Rheumatol. 1983;22(3 Suppl):34–43.

    CAS  PubMed  Google Scholar 

  19. Buckland-Wright JC, Carmichael I, Walker SR. Quantitative microfocal radiography accurately detects joint changes in rheumatoid arthritis. Ann Rheum Dis. 1986;45(5):379–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Jonsson K, Fredin HO, Cederlund CG, Bauer M. Width of the normal ankle joint. Acta Radiol Diagn (Stockh). 1984;25(2):147–9.

    CAS  Google Scholar 

  21. Pogrund H, Bloom R, Mogle P. The normal width of the adult hip joint: the relationship to age, sex, and obesity. Skeletal Radiol. 1983;10(1):10–2.

    CAS  PubMed  Google Scholar 

  22. Buckland-Wright C. Protocols for precise radio-anatomical positioning of the tibiofemoral and patellofemoral compartments of the knee. Osteoarthritis Cartilage. 1995; 3 Suppl A:71–80.

    PubMed  Google Scholar 

  23. Ravaud P, Auleley GR, Chastang C, Rousselin B, Paolozzi L, Amor B, et al. Knee joint space width measurement: an experimental study of the influence of radiographic procedure and joint positioning. Br J Rheumatol. 1996;35(8):761–6.

    CAS  PubMed  Google Scholar 

  24. Buckland-Wright JC, Wolfe F, Ward RJ, Flowers N, Hayne C. Substantial superiority of semiflexed (MTP) views in knee osteoarthritis: a comparative radiographic study, without fluoroscopy, of standing extended, semiflexed (MTP), and schuss views. J Rheumatol. 1999;26(12):2664–74.

    CAS  PubMed  Google Scholar 

  25. Auleley GR, Duche A, Drape JL, Dougados M, Ravaud P. Measurement of joint space width in hip osteoarthritis: influence of joint positioning and radiographic procedure. Rheumatology (Oxford). 2001;40(4):414–9.

    CAS  Google Scholar 

  26. Mazzuca SA, Brandt KD, Buckwalter KA, Lane KA, Katz BP. Field test of the reproducibility of the semiflexed metatarsophalangeal view in repeated radiographic examinations of subjects with osteoarthritis of the knee. Arthritis Rheum. 2002;46(1):109–13.

    PubMed  Google Scholar 

  27. Wolfe F, Lane NE, Buckland-Wright C. Radiographic methods in knee osteoarthritis: a further comparison of semiflexed (MTP), schuss-tunnel, and weight-bearing anteroposterior views for joint space narrowing and osteophytes. J Rheumatol. 2002;29(12):2597–601.

    PubMed  Google Scholar 

  28. Charles HC, Kraus VB, Ainslie M. Hellio Le Graverand-Gastineau MP. Optimization of the fixed-flexion knee radiograph. Osteoarthritis Cartilage. 2007;15(11):1221–4.

    CAS  PubMed  Google Scholar 

  29. Nevitt MC, Peterfy C, Guermazi A, Felson DT, Duryea J, Woodworth T, et al. Longitudinal performance evaluation and validation of fixed-flexion radiography of the knee for detection of joint space loss. Arthritis Rheum. 2007;56(5):1512–20.

    PubMed  Google Scholar 

  30. Conaghan PG, Hunter DJ, Maillefert JF, Reichmann WM, Losina E. Summary and recommendations of the OARSI FDA osteoarthritis Assessment of Structural Change Working Group. Osteoarthritis Cartilage. 2011;19(5):606–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Buckland-Wright JC, Macfarlane DG, Williams SA, Ward RJ. Accuracy and precision of joint space width measurements in standard and macroradiographs of osteoarthritic knees. Ann Rheum Dis. 1995;54(11):872–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mazzuca SA, Brandt KD, Buckland-Wright JC, Buckwalter KA, Katz BP, Lynch JA, et al. Field test of the reproducibility of automated measurements of medial tibiofemoral joint space width derived from standardized knee radiographs. J Rheumatol. 1999;26(6):1359–65.

    CAS  PubMed  Google Scholar 

  33. Duryea J, Li J, Peterfy CG, Gordon C, Genant HK. Trainable rule-based algorithm for the measurement of joint space width in digital radiographic images of the knee. Med Phys. 2000;27(3):580–91.

    CAS  PubMed  Google Scholar 

  34. Gordon CL, Wu C, Peterfy CG, Li J, Duryea J, Klifa C, et al. Automated measurement of radiographic hip joint-space width. Med Phys. 2001;28(2):267–77.

    CAS  PubMed  Google Scholar 

  35. Duryea J, Zaim S, Genant HK. New radiographic-based surrogate outcome measures for osteoarthritis of the knee. Osteoarthritis Cartilage. 2003;11(2):102–10.

    CAS  PubMed  Google Scholar 

  36. Wilbrand H, Engkvist O. Radiography in joint reconstruction with perichondrial grafts. Acta Radiol Diagn (Stockh). 1979;20(6):967–76.

    CAS  Google Scholar 

  37. Roffman M, Barmeir E, Dubowitz B. Mendes DG. Solomon L. The role of computed tomography in the management of osteochondral grafts. Clin Orthop Relat Res. 1982;166:112–6.

    Google Scholar 

  38. Wagner A. Is pneumo-arthrography necessary for the diagnosis of meniscus lesions? Acta Radiol. 1952;37(3–4):399–400.

    CAS  PubMed  Google Scholar 

  39. Horns JW. Single contrast knee arthrography in abnormalities of the articular cartilage. Radiology. 1972;105(3):537–40.

    CAS  PubMed  Google Scholar 

  40. Staple TW. Extrameniscal lesions demonstrated by double-contrast arthrography of the knee. Radiology. 1972;102(2):311–9.

    CAS  PubMed  Google Scholar 

  41. Buckland-Wright JC, Macfarlane DG, Lynch JA, Jasani MK, Bradshaw CR. Joint space width measures cartilage thickness in osteoarthritis of the knee: high resolution plain film and double contrast macroradiographic investigation. Ann Rheum Dis. 1995;54(4):263–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Spring MW, Buckland-Wright JC. Contrast medium inhibition in osteoarthritic cartilage. Br J Radiol. 1990;63(754):823–5.

    CAS  PubMed  Google Scholar 

  43. Ihara H. Double-contrast CT, arthrography of the cartilage of the patellofemoral joint. Clin Orthop Relat Res. 1985;198:50–5.

    Google Scholar 

  44. Heare MM, Gillespy 3rd T, Bittar ES. Direct coronal computed tomography arthrography of osteochondritis dissecans of the talus. Skeletal Radiol. 1988;17(3):187–9.

    CAS  PubMed  Google Scholar 

  45. Vande Berg BC, Lecouvet FE, Poilvache P, Maldague B, Malghem J. Spiral CT arthrography of the knee: technique and value in the assessment of internal derangement of the knee. Eur Radiol. 2002;12(7):1800–10.

    CAS  PubMed  Google Scholar 

  46. Bansal PN, Joshi NS, Entezari V, Malone BC, Stewart RC, Snyder BD, et al. Cationic contrast agents improve quantification of glycosaminoglycan (GAG) content by contrast enhanced CT imaging of cartilage. J Orthop Res. 2010.

  47. Xie L, Lin AS, Guldberg RE, Levenston ME. Nondestructive assessment of sGAG content and distribution in normal and degraded rat articular cartilage via EPIC-microCT. Osteoarthritis Cartilage. 18(1):65–72.

  48. Kallioniemi AS, Jurvelin JS, Nieminen MT, Lammi MJ, Toyras J. Contrast agent enhanced pQCT of articular cartilage. Phys Med Biol. 2007;52(4):1209–19.

    CAS  PubMed  Google Scholar 

  49. Joshi NS, Bansal PN, Stewart RC, Snyder BD, Grinstaff MW. Effect of contrast agent charge on visualization of articular cartilage using computed tomography: exploiting electrostatic interactions for improved sensitivity. J Am Chem Soc. 2009;131(37):13234–5.

    CAS  PubMed  Google Scholar 

  50. Taylor C, Carballido-Gamio J, Majumdar S, Li X. Comparison of quantitative imaging of cartilage for osteoarthritis: T2, T1rho, dGEMRIC and contrast-enhanced computed tomography. Magn Reson Imaging. 2009;27(6):779–84.

    PubMed  PubMed Central  Google Scholar 

  51. Tepic S, Macirowski T, Mann RW. Mechanical properties of articular cartilage elucidated by osmotic loading and ultrasound. Proc Natl Acad Sci USA. 1983;80(11):3331–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Weigel JP, Cartee RE, Marich KW. Preliminary study on the use of ultrasonic transmission imaging to evaluate the hip joint in the immature dog. Ultrasound Med Biol. 1983;9(4):371–8.

    CAS  PubMed  Google Scholar 

  53. Aisen AM, McCune WJ, MacGuire A, Carson PL, Silver TM, Jafri SZ, et al. Sonographic evaluation of the cartilage of the knee. Radiology. 1984;153(3):781–4.

    CAS  PubMed  Google Scholar 

  54. Buckwalter JA. Articular cartilage injuries. Clin Orthop Relat Res. 2002;402:21–37.

    Google Scholar 

  55. Peterfy CG, Guermazi A, Zaim S, Tirman PF, Miaux Y, White D, et al. Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage. 2004;12(3):177–90.

    CAS  PubMed  Google Scholar 

  56. Hunter DJ, Lo GH, Gale D, Grainger AJ, Guermazi A, Conaghan PG. The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston Leeds Osteoarthritis Knee Score). Ann Rheum Dis. 2008;67(2):206–11.

    CAS  PubMed  Google Scholar 

  57. Drape JL, Pessis E, Auleley GR, Chevrot A, Dougados M, Ayral X. Quantitative MR imaging evaluation of chondropathy in osteoarthritic knees. Radiology. 1998;208(1):49–55.

    CAS  PubMed  Google Scholar 

  58. Biswal S, Hastie T, Andriacchi TP, Bergman GA, Dillingham MF, Lang P. Risk factors for progressive cartilage loss in the knee: a longitudinal magnetic resonance imaging study in forty-three patients. Arthritis Rheum. 2002;46(11):2884–92.

    PubMed  Google Scholar 

  59. Eckstein F, Westhoff J, Sittek H, Maag KP, Haubner M, Faber S, et al. In vivo reproducibility of three-dimensional cartilage volume and thickness measurements with MR imaging. AJR Am J Roentgenol. 1998;170(3):593–7.

    CAS  PubMed  Google Scholar 

  60. Peterfy CG, van Dijke CF, Janzen DL, Gluer CC, Namba R, Majumdar S, et al. Quantification of articular cartilage in the knee with pulsed saturation transfer subtraction and fat-suppressed MR imaging: optimization and validation. Radiology. 1994;192(2):485–91.

    CAS  PubMed  Google Scholar 

  61. Duryea J, Neumann G, Brem MH, Koh W, Noorbakhsh F, Jackson RD, et al. Novel fast semi-automated software to segment cartilage for knee MR acquisitions. Osteoarthritis Cartilage. 2007;15(5):487–92.

    CAS  PubMed  Google Scholar 

  62. Raynauld JP, Kauffmann C, Beaudoin G, Berthiaume MJ, de Guise JA, Bloch DA, et al. Reliability of a quantification imaging system using magnetic resonance images to measure cartilage thickness and volume in human normal and osteoarthritic knees. Osteoarthritis Cartilage. 2003;11(5):351–60.

    PubMed  Google Scholar 

  63. Cicuttini F, Forbes A, Morris K, Darling S, Bailey M, Stuckey S. Gender differences in knee cartilage volume as measured by magnetic resonance imaging. Osteoarthritis Cartilage. 1999;7(3):265–71.

    CAS  PubMed  Google Scholar 

  64. Lee KY, Dunn TC, Steinbach LS, Ozhinsky E, Ries MD, Majumdar S. Computer-aided quantification of focal cartilage lesions of osteoarthritic knee using MRI. Magn Reson Imaging. 2004;22(8):1105–15.

    PubMed  Google Scholar 

  65. Bae KT, Shim H, Tao C, Chang S, Wang JH, Boudreau R, et al. Intra- and inter-observer reproducibility of volume measurement of knee cartilage segmented from the OAI MR image set using a novel semi-automated segmentation method. Osteoarthritis Cartilage. 2009;17(12):1589–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Le Graverand-Gastineau MP. Disease modifying osteoarthritis drugs: facing development challenges and choosing molecular targets. Curr Drug Targets. 11(5):528–535.

  67. Pelletier JP, Raynauld JP, Caron J, Mineau F, Abram F, Dorais M, et al. Decrease in serum level of matrix metalloproteinases is predictive of the disease-modifying effect of osteoarthritis drugs assessed by quantitative MRI in patients with knee osteoarthritis. Ann Rheum Dis. 2010;69(12):2095–101.

    CAS  PubMed  Google Scholar 

  68. Raynauld JP, Martel-Pelletier J, Abram F, Dorais M, Haraoui B, Choquette D, et al. Analysis of the precision and sensitivity to change of different approaches to assess cartilage loss by quantitative MRI in a longitudinal multicentre clinical trial in patients with knee osteoarthritis. Arthritis Res Ther. 2008;10(6):R129.

    PubMed  PubMed Central  Google Scholar 

  69. Welsch GH, Zak L, Mamisch TC, Resinger C, Marlovits S, Trattnig S. Three-dimensional magnetic resonance observation of cartilage repair tissue (MOCART) score assessed with an isotropic three-dimensional true fast imaging with steady-state precession sequence at 3.0 Tesla. Invest Radiol. 2009;44(9):603–12.

    PubMed  Google Scholar 

  70. Trattnig S, Winalski CS, Marlovits S, Jurvelin JS, Welsch GH, Potter HG. Magnetic resonance imaging of cartilage repair: a review. Cartilage. 2011;2:5–26.

    PubMed  PubMed Central  Google Scholar 

  71. Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S. Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol. 2006;57(1):16–23.

    PubMed  Google Scholar 

  72. Alparslan L, Winalski CS, Boutin RD, Minas T. Postoperative magnetic resonance imaging of articular cartilage repair. Semin Musculoskelet Radiol. 2001;5(4):345–63.

    CAS  PubMed  Google Scholar 

  73. Winalski CS, Minas T. Evaluation of chondral injuries by magnetic resonance imaging: repair assessments. Op Tech Sports Med. 2000;8:108–19.

    Google Scholar 

  74. Moisio K, Eckstein F, Chmiel JS, Guermazi A, Prasad P, Almagor O, et al. Denuded subchondral bone and knee pain in persons with knee osteoarthritis. Arthritis Rheum. 2009;60(12):3703–10.

    PubMed  PubMed Central  Google Scholar 

  75. Rubin DA, Harner CD, Costello JM. Treatable chondral injuries in the knee: frequency of associated focal subchondral edema. AJR Am J Roentgenol. 2000;174(4):1099–106.

    CAS  PubMed  Google Scholar 

  76. Levy AS, Lohnes J, Sculley S, LeCroy M, Garrett W. Chondral delamination of the knee in soccer players. Am J Sports Med. 1996;24(5):634–9.

    CAS  PubMed  Google Scholar 

  77. Beaule PE, Zaragoza E, Copelan N. Magnetic resonance imaging with gadolinium arthrography to assess acetabular cartilage delamination. A report of four cases. J Bone Joint Surg Am. 2004; 86-A(10):2294–2298.

    PubMed  Google Scholar 

  78. Winalski CS, Gupta KB. Magnetic resonance imaging of focal articular cartilage lesions. Top Magn Reson Imaging. 2003;14(2):131–44.

    PubMed  Google Scholar 

  79. Kendell SD, Helms CA, Rampton JW, Garrett WE, Higgins LD. MRI appearance of chondral delamination injuries of the knee. AJR Am J Roentgenol. 2005;184(5):1486–9.

    PubMed  Google Scholar 

  80. Alparslan L, Minas T, Winalski CS. Magnetic resonance imaging of autologous chondrocyte implantation. Semin Ultrasound CT MR. 2001;22(4):341–51.

    CAS  PubMed  Google Scholar 

  81. Azer NM, Winalski CS, Minas T. MR imaging for surgical planning and postoperative assessment in early osteoarthritis. Radiol Clin North Am. 2004;42(1):43–60.

    PubMed  Google Scholar 

  82. Zanetti M, Bruder E, Romero J, Hodler J. Bone marrow edema pattern in osteoarthritic knees: correlation between MR imaging and histologic findings. Radiology. 2000;215(3):835–40.

    CAS  PubMed  Google Scholar 

  83. Taljanovic MS, Graham AR, Benjamin JB, Gmitro AF, Krupinski EA, Schwartz SA, et al. Bone marrow edema pattern in advanced hip osteoarthritis: quantitative assessment with magnetic resonance imaging and correlation with clinical examination, radiographic findings, and histopathology. Skeletal Radiol. 2008;37(5):423–31.

    PubMed  Google Scholar 

  84. Milgram JW. Morphologic alterations of the subchondral bone in advanced degenerative arthritis. Clin Orthop Relat Res. 1983;173:293–312.

    Google Scholar 

  85. Carrino JA, Blanco R. Magnetic resonance–guided musculoskeletal interventional radiology. Semin Musculoskelet Radiol. 2006;10(2):159–74.

    PubMed  Google Scholar 

  86. Bydder GM, Young IR. Clinical use of the partial saturation and saturation recovery sequences in MR imaging. J Comput Assist Tomogr. 1985;9(6):1020–32.

    CAS  PubMed  Google Scholar 

  87. Beltran J, Noto AM, Herman LJ, Mosure JC, Burk JM, Christoforidis AJ. Joint effusions: MR imaging. Radiology. 1986;158(1):133–7.

    CAS  PubMed  Google Scholar 

  88. Hajek PC, Baker LL, Bjorkengren A, Sartoris DJ, Neumann CH, Resnick D. High-resolution magnetic resonance imaging of the ankle: normal anatomy. Skeletal Radiol. 1986;15(7):536–40.

    CAS  PubMed  Google Scholar 

  89. Gylys-Morin VM, Hajek PC, Sartoris DJ, Resnick D. Articular cartilage defects: detectability in cadaver knees with MR. AJR Am J Roentgenol. 1987;148(6):1153–7.

    CAS  PubMed  Google Scholar 

  90. Winalski CS, Aliabadi P, Wright RJ, Shortkroff S, Sledge CB, Weissman BN. Enhancement of joint fluid with intravenously administered gadopentetate dimeglumine: technique, rationale, and implications. Radiology. 1993;187(1):179–85.

    CAS  PubMed  Google Scholar 

  91. Drape JL, Thelen P, Gay-Depassier P, Silbermann O, Benacerraf R. Intraarticular diffusion of Gd-DOTA after intravenous injection in the knee: MR imaging evaluation. Radiology. 1993;188(1):227–34.

    CAS  PubMed  Google Scholar 

  92. Helms CA, McGonegle SJ, Vinson EN, Whiteside MB. Magnetic resonance arthrography of the shoulder: accuracy of gadolinium versus saline for rotator cuff and labral pathology. Skeletal Radiol. 2011;40(2):197–203.

    PubMed  Google Scholar 

  93. Steinbach LS, Palmer WE, Schweitzer ME. Special focus session. MR arthrography. Radiographics. 2002;22(5):1223–46.

    PubMed  Google Scholar 

  94. Masi JN, Newitt D, Sell CA, Daldrup-Link H, Steinbach L, Majumdar S, et al. Optimization of gadodiamide concentration for MR arthrography at 3 T. AJR Am J Roentgenol. 2005;184(6):1754–61.

    PubMed  Google Scholar 

  95. Hodler J. Technical errors in MR arthrography. Skeletal Radiol. 2008;37(1):9–18.

    PubMed  Google Scholar 

  96. Andreisek G, Froehlich JM, Hodler J, Weishaupt D, Beutler V, Pfirrmann CW, et al. Direct MR arthrography at 1.5 and 3.0 T: signal dependence on gadolinium and iodine concentrations–phantom study. Radiology. 2008;247(3):706–16.

    PubMed  Google Scholar 

  97. Moser T, Dosch JC, Moussaoui A, Dietemann JL. Wrist ligament tears: evaluation of MRI and combined MDCT and MR arthrography. AJR Am J Roentgenol. 2007;188(5):1278–86.

    PubMed  Google Scholar 

  98. Subhas N, Freire M, Primak AN, Polster JM, Recht MP, Davros WJ, et al. CT arthrography: in vitro evaluation of single and dual energy for optimization of technique. Skeletal Radiol. 2010;39(10):1025–31.

    PubMed  Google Scholar 

  99. Bashir A, Gray ML, Burstein D. Gd-DTPA2- as a measure of cartilage degradation. Magn Reson Med. 1996;36(5):665–73.

    CAS  PubMed  Google Scholar 

  100. Bacic G, Liu KJ, Goda F, Hoopes PJ, Rosen GM, Swartz HM. MRI contrast enhanced study of cartilage proteoglycan degradation in the rabbit knee. Magn Reson Med. 1997;37(5):764–8.

    CAS  PubMed  Google Scholar 

  101. Winalski CS, Shortkroff S, Schneider E, Yoshioka H, Mulkern RV, Rosen GM. Targeted dendrimer-based contrast agents for articular cartilage assessment by MR imaging. Osteoarthritis Cartilage. 2008;16(7):815–22.

    CAS  PubMed  Google Scholar 

  102. Wagner M, Werner A, Grunder W. Visualization of collagenase-induced cartilage degradation using NMR microscopy. Invest Radiol. 1999;34(10):607–14.

    CAS  PubMed  Google Scholar 

  103. Grunder W, Biesold M, Wagner M, Werner A. Improved nuclear magnetic resonance microscopic visualization of joint cartilage using liposome entrapped contrast agents. Invest Radiol. 1998;33(4):193–202.

    CAS  PubMed  Google Scholar 

  104. Buckwalter JA, Mankin HJ, Grodzinsky AJ. Articular cartilage and osteoarthritis. Instr Course Lect. 2005;54:465–80.

    PubMed  Google Scholar 

  105. Goodwin DW, Zhu H, Dunn JF. In vitro MR imaging of hyaline cartilage: correlation with scanning electron microscopy. AJR Am J Roentgenol. 2000;174(2):405–9.

    CAS  PubMed  Google Scholar 

  106. Goodwin DW, Wadghiri YZ, Zhu H, Vinton CJ, Smith ED, Dunn JF. Macroscopic structure of articular cartilage of the tibial plateau: influence of a characteristic matrix architecture on MRI appearance. AJR Am J Roentgenol. 2004;182(2):311–8.

    PubMed  Google Scholar 

  107. Recht MP, Goodwin DW, Winalski CS, White LM. MRI of articular cartilage: revisiting current status and future directions. AJR Am J Roentgenol. 2005;185(4):899–914.

    PubMed  Google Scholar 

  108. Konig H, Sauter R, Deimling M, Vogt M. Cartilage disorders: comparison of spin-echo, CHESS, and FLASH sequence MR images. Radiology. 1987;164(3):753–8.

    CAS  PubMed  Google Scholar 

  109. Reiser MF, Bongartz G, Erlemann R, Strobel M, Pauly T, Gaebert K, et al. Magnetic resonance in cartilaginous lesions of the knee joint with three-dimensional gradient-echo imaging. Skeletal Radiol. 1988;17(7):465–71.

    CAS  PubMed  Google Scholar 

  110. Munk PL, Helms CA, Genant HK, Holt RG. Magnetic resonance imaging of the knee: current status, new directions. Skeletal Radiol. 1989;18(8):569–77.

    CAS  PubMed  Google Scholar 

  111. Spritzer CE, Vogler JB, Martinez S, Garrett Jr WE, Johnson GA, McNamara MJ, et al. MR imaging of the knee: preliminary results with a 3DFT GRASS pulse sequence. AJR Am J Roentgenol. 1988;150(3):597–603.

    CAS  PubMed  Google Scholar 

  112. Tyrrell RL, Gluckert K, Pathria M, Modic MT. Fast three-dimensional MR imaging of the knee: comparison with arthroscopy. Radiology. 1988;166(3):865–72.

    CAS  PubMed  Google Scholar 

  113. Adam G, Bohndorf K, Drobnitzky M, Guenther RW. MR imaging of the knee: three-dimensional volume imaging combined with fast processing. J Comput Assist Tomogr. 1989;13(6):984–8.

    CAS  PubMed  Google Scholar 

  114. Hardy PA, Recht MP, Piraino D, Thomasson D. Optimization of a dual echo in the steady state (DESS) free-precession sequence for imaging cartilage. J Magn Reson Imaging. 1996;6(2):329–35.

    CAS  PubMed  Google Scholar 

  115. Wolff SD, Chesnick S, Frank JA, Lim KO, Balaban RS. Magnetization transfer contrast: MR imaging of the knee. Radiology. 1991;179(3):623–8.

    CAS  PubMed  Google Scholar 

  116. Koskinen SK, Komu ME. Low-field strength magnetization transfer contrast imaging of the patellar cartilage. Acta Radiol. 1993;34(2):124–6.

    CAS  PubMed  Google Scholar 

  117. Vahlensieck M, Dombrowski F, Leutner C, Wagner U, Reiser M. Magnetization transfer contrast (MTC) and MTC-subtraction: enhancement of cartilage lesions and intracartilaginous degeneration in vitro. Skeletal Radiol. 1994;23(7):535–9.

    CAS  PubMed  Google Scholar 

  118. Recht MP, Kramer J, Marcelis S, Pathria MN, Trudell D, Haghighi P, et al. Abnormalities of articular cartilage in the knee: analysis of available MR techniques. Radiology. 1993;187(2):473–8.

    CAS  PubMed  Google Scholar 

  119. Eckstein F, Sittek H, Milz S, Putz R, Reiser M. The morphology of articular cartilage assessed by magnetic resonance imaging (MRI). Reproducibility and anatomical correlation. Surg Radiol Anat. 1994;16(4):429–38.

    CAS  PubMed  Google Scholar 

  120. Peterfy CG, van Dijke CF, Lu Y, Nguyen A, Connick TJ, Kneeland JB, et al. Quantification of the volume of articular cartilage in the metacarpophalangeal joints of the hand: accuracy and precision of three-dimensional MR imaging. AJR Am J Roentgenol. 1995;165(2):371–5.

    CAS  PubMed  Google Scholar 

  121. Recht MP, Piraino DW, Paletta GA, Schils JP, Belhobek GH. Accuracy of fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging in the detection of patellofemoral articular cartilage abnormalities. Radiology. 1996;198(1):209–12.

    CAS  PubMed  Google Scholar 

  122. Disler DG, McCauley TR, Kelman CG, Fuchs MD, Ratner LM, Wirth CR, et al. Fat-suppressed three-dimensional spoiled gradient-echo MR imaging of hyaline cartilage defects in the knee: comparison with standard MR imaging and arthroscopy. AJR Am J Roentgenol. 1996;167(1):127–32.

    CAS  PubMed  Google Scholar 

  123. Peterfy CG, Schneider E, Nevitt M. The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthritis Cartilage. 2008;16(12):1433–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Duc SR, Pfirrmann CW, Schmid MR, Zanetti M, Koch PP, Kalberer F, et al. Articular cartilage defects detected with 3D water-excitation true FISP: prospective comparison with sequences commonly used for knee imaging. Radiology. 2007;245(1):216–23.

    PubMed  Google Scholar 

  125. Kijowski R, Blankenbaker DG, Klaers JL, Shinki K, De Smet AA, Block WF. Vastly undersampled isotropic projection steady-state free precession imaging of the knee: diagnostic performance compared with conventional MR. Radiology. 2009;251(1):185–94.

    PubMed  Google Scholar 

  126. Potter HG, Linklater JM, Allen AA, Hannafin JA, Haas SB. Magnetic resonance imaging of articular cartilage in the knee. An evaluation with use of fast-spin-echo imaging. J Bone Joint Surg Am. 1998;80(9):1276–84.

    CAS  PubMed  Google Scholar 

  127. Yao L, Gentili A, Thomas A. Incidental magnetization transfer contrast in fast spin-echo imaging of cartilage. J Magn Reson Imaging. 1996;6(1):180–4.

    CAS  PubMed  Google Scholar 

  128. Mulkern RV, Wong ST, Winalski C, Jolesz FA. Contrast manipulation and artifact assessment of 2D and 3D RARE sequences. Magn Reson Imaging. 1990;8(5):557–66.

    CAS  PubMed  Google Scholar 

  129. Gold GE, Busse RF, Beehler C, Han E, Brau AC, Beatty PJ, et al. Isotropic MRI of the knee with 3D fast spin-echo extended echo-train acquisition (XETA): initial experience. AJR Am J Roentgenol. 2007;188(5):1287–93.

    PubMed  Google Scholar 

  130. Subhas N, Kao A, Freire M, Polster J, Obuchowski N, Winalski CS. Comparison of 3D Isotropic Resolution Fast Spin-Echo MR Imaging with Conventional 2D MR Imaging of Knee Ligaments and Menisci at 3T. AJR Am J Roentgenol. 2011;197(2):442–50.

    PubMed  Google Scholar 

  131. Kijowski R, Davis KW, Blankenbaker DG, Woods MA, Del Rio AM, De Smet AA. Evaluation of the menisci of the knee joint using three-dimensional isotropic resolution fast spin-echo imaging: diagnostic performance in 250 patients with surgical correlation. Skeletal Radiol. 2011: ePub.

  132. Gold GE, Fuller SE, Hargreaves BA, Stevens KJ, Beaulieu CF. Driven equilibrium magnetic resonance imaging of articular cartilage: initial clinical experience. J Magn Reson Imaging. 2005;21(4):476–81.

    PubMed  Google Scholar 

  133. Yoshioka H, Stevens K, Hargreaves BA, Steines D, Genovese M, Dillingham MF, et al. Magnetic resonance imaging of articular cartilage of the knee: comparison between fat-suppressed three-dimensional SPGR imaging, fat-suppressed FSE imaging, and fat-suppressed three-dimensional DEFT imaging, and correlation with arthroscopy. J Magn Reson Imaging. 2004;20(5):857–64.

    PubMed  Google Scholar 

  134. Crema MD, Roemer FW, Marra MD, Burstein D, Gold GE, Eckstein F, et al. Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics. 2011;31(1):37–61.

    PubMed  Google Scholar 

  135. Chandnani VP, Ho C, Chu P, Trudell D, Resnick D. Knee hyaline cartilage evaluated with MR imaging: a cadaveric study involving multiple imaging sequences and intraarticular injection of gadolinium and saline solution. Radiology. 1991;178(2):557–61.

    CAS  PubMed  Google Scholar 

  136. Eckstein F, Gavazzeni A, Sittek H, Haubner M, Losch A, Milz S, et al. Determination of knee joint cartilage thickness using three-dimensional magnetic resonance chondro-crassometry (3D MR-CCM). Magn Reson Med. 1996;36(2):256–65.

    CAS  PubMed  Google Scholar 

  137. Dupuy DE, Spillane RM, Rosol MS, Rosenthal DI, Palmer WE, Burke DW, et al. Quantification of articular cartilage in the knee with three-dimensional MR imaging. Acad Radiol. 1996;3(11):919–24.

    CAS  PubMed  Google Scholar 

  138. Eckstein F, Hudelmaier M, Wirth W, Kiefer B, Jackson R, Yu J, et al. Double echo steady state magnetic resonance imaging of knee articular cartilage at 3 Tesla: a pilot study for the Osteoarthritis Initiative. Ann Rheum Dis. 2006;65(4):433–41.

    CAS  PubMed  Google Scholar 

  139. Kshirsagar AA, Watson PJ, Tyler JA, Hall LD. Measurement of localized cartilage volume and thickness of human knee joints by computer analysis of three-dimensional magnetic resonance images. Invest Radiol. 1998;33(5):289–99.

    CAS  PubMed  Google Scholar 

  140. Peterfy CG, Linares R, Steinbach LS. Recent advances in magnetic resonance imaging of the musculoskeletal system. Radiol Clin North Am. 1994;32(2):291–311.

    CAS  PubMed  Google Scholar 

  141. Solloway S, Hutchinson CE, Waterton JC, Taylor CJ. The use of active shape models for making thickness measurements of articular cartilage from MR images. Magn Reson Med. 1997;37(6):943–52.

    CAS  PubMed  Google Scholar 

  142. Stammberger T, Eckstein F, Englmeier KH, Reiser M. Determination of 3D cartilage thickness data from MR imaging: computational method and reproducibility in the living. Magn Reson Med. 1999;41(3):529–36.

    CAS  PubMed  Google Scholar 

  143. Cohen ZA, McCarthy DM, Kwak SD, Legrand P, Fogarasi F, Ciaccio EJ, et al. Knee cartilage topography, thickness, and contact areas from MRI: in-vitro calibration and in-vivo measurements. Osteoarthritis Cartilage. 1999;7(1):95–109.

    CAS  PubMed  Google Scholar 

  144. Losch A, Eckstein F, Haubner M, Englmeier KH. A non-invasive technique for 3-dimensional assessment of articular cartilage thickness based on MRI. Part 1: Development of a computational method. Magn Reson Imaging. 1997;15(7):795–804.

    CAS  PubMed  Google Scholar 

  145. Eckstein F, Kunz M, Schutzer M, Hudelmaier M, Jackson RD, Yu J, et al. Two year longitudinal change and test-retest-precision of knee cartilage morphology in a pilot study for the osteoarthritis initiative. Osteoarthritis Cartilage. 2007;15(11):1326–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Mosher TJ, Zhang Z, Reddy R, Boudhar S, Milestone BN, Morrison WB, et al. Knee articular cartilage damage in osteoarthritis: analysis of MR image biomarker reproducibility in ACRIN-PA 4001 multicenter trial. Radiology. 2011;258(3):832–42.

    PubMed  Google Scholar 

  147. Yoshioka H, Stevens K, Genovese M, Dillingham MF, Lang P. Articular cartilage of knee: normal patterns at MR imaging that mimic disease in healthy subjects and patients with osteoarthritis. Radiology. 2004;231(1):31–8.

    PubMed  Google Scholar 

  148. van Dijk CN, Reilingh ML, Zengerink M, van Bergen CJ. The natural history of osteochondral lesions in the ankle. Instr Course Lect. 59:375–386.

  149. Simon WH, Friedenberg S, Richardson S. Joint congruence. A correlation of joint congruence and thickness of articular cartilage in dogs. J Bone Joint Surg Am. 1973;55(8):1614–20.

    CAS  PubMed  Google Scholar 

  150. Cicuttini FM, Wluka AE, Wang Y, Davis SR, Hankin J, Ebeling P. Compartment differences in knee cartilage volume in healthy adults. J Rheumatol. 2002;29(3):554–6.

    PubMed  Google Scholar 

  151. Cicuttini F, Wluka A, Wang Y, Stuckey S. The determinants of change in patella cartilage volume in osteoarthritic knees. J Rheumatol. 2002;29(12):2615–9.

    PubMed  Google Scholar 

  152. Wluka AE, Davis SR, Bailey M, Stuckey SL, Cicuttini FM. Users of oestrogen replacement therapy have more knee cartilage than non-users. Ann Rheum Dis. 2001;60(4):332–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Wluka AE, Wolfe R, Davis SR, Stuckey S, Cicuttini FM. Tibial cartilage volume change in healthy postmenopausal women: a longitudinal study. Ann Rheum Dis. 2004;63(4):444–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Ding C, Cicuttini F, Scott F, Stankovich J, Cooley H, Jones G. The genetic contribution and relevance of knee cartilage defects: case-control and sib-pair studies. J Rheumatol. 2005;32(10):1937–42.

    PubMed  Google Scholar 

  155. Eckstein F, Englmeier KH, Reiser M. Quantitative cartilage analysis with magnetic resonance tomography (qMRI)–a new era in arthrosis diagnosis? Z Rheumatol. 2002;61(3):250–9.

    CAS  PubMed  Google Scholar 

  156. Cicuttini FM, Forbes A, Yuanyuan W, Rush G, Stuckey SL. Rate of knee cartilage loss after partial meniscectomy. J Rheumatol. 2002;29(9):1954–6.

    PubMed  Google Scholar 

  157. Cicuttini FM, Jones G, Forbes A, Wluka AE. Rate of cartilage loss at two years predicts subsequent total knee arthroplasty: a prospective study. Ann Rheum Dis. 2004;63(9):1124–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Raynauld JP, Martel-Pelletier J, Berthiaume MJ, Labonte F, Beaudoin G, de Guise JA, et al. Quantitative magnetic resonance imaging evaluation of knee osteoarthritis progression over two years and correlation with clinical symptoms and radiologic changes. Arthritis Rheum. 2004;50(2):476–87.

    PubMed  Google Scholar 

  159. Gandy SJ, Dieppe PA, Keen MC, Maciewicz RA, Watt I, Waterton JC. No loss of cartilage volume over three years in patients with knee osteoarthritis as assessed by magnetic resonance imaging. Osteoarthritis Cartilage. 2002;10(12):929–37.

    CAS  PubMed  Google Scholar 

  160. Englund M, Lohmander LS. Risk factors for symptomatic knee osteoarthritis fifteen to twenty-two years after meniscectomy. Arthritis Rheum. 2004;50(9):2811–9.

    CAS  PubMed  Google Scholar 

  161. Saunders J, Ding C, Cicuttini F, Jones G. Radiographic osteoarthritis and pain are independent predictors of knee cartilage loss: a prospective study. Intern Med J. 2011:ePub.

  162. Hunter DJ, March L, Sambrook PN. The association of cartilage volume with knee pain. Osteoarthritis Cartilage. 2003;11(10):725–9.

    CAS  PubMed  Google Scholar 

  163. Lindsey CT, Narasimhan A, Adolfo JM, Jin H, Steinbach LS, Link T, et al. Magnetic resonance evaluation of the interrelationship between articular cartilage and trabecular bone of the osteoarthritic knee. Osteoarthritis Cartilage. 2004;12(2):86–96.

    CAS  PubMed  Google Scholar 

  164. Wluka AE, Wolfe R, Stuckey S, Cicuttini FM. How does tibial cartilage volume relate to symptoms in subjects with knee osteoarthritis? Ann Rheum Dis. 2004;63(3):264–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Cicuttini F, Ding C, Wluka A, Davis S, Ebeling PR, Jones G. Association of cartilage defects with loss of knee cartilage in healthy, middle-age adults: a prospective study. Arthritis Rheum. 2005;52(7):2033–9.

    PubMed  Google Scholar 

  166. Blumenkrantz G, Lindsey CT, Dunn TC, Jin H, Ries MD, Link TM, et al. A pilot, two-year longitudinal study of the interrelationship between trabecular bone and articular cartilage in the osteoarthritic knee. Osteoarthritis Cartilage. 2004;12(12):997–1005.

    PubMed  Google Scholar 

  167. Bobinac D, Spanjol J, Zoricic S, Maric I. Changes in articular cartilage and subchondral bone histomorphometry in osteoarthritic knee joints in humans. Bone. 2003;32(3):284–90.

    PubMed  Google Scholar 

  168. Raynauld JP, Martel-Pelletier J, Berthiaume MJ, Beaudoin G, Choquette D, Haraoui B, et al. Long term evaluation of disease progression through the quantitative magnetic resonance imaging of symptomatic knee osteoarthritis patients: correlation with clinical symptoms and radiographic changes. Arthritis Res Ther. 2006;8(1):R21.

    PubMed  Google Scholar 

  169. Torres L, Dunlop DD, Peterfy C, Guermazi A, Prasad P, Hayes KW, et al. The relationship between specific tissue lesions and pain severity in persons with knee osteoarthritis. Osteoarthritis Cartilage. 2006;14(10):1033–40.

    CAS  PubMed  Google Scholar 

  170. Gray ML, Burstein D, Xia Y. Biochemical (and functional) imaging of articular cartilage. Semin Musculoskelet Radiol. 2001;5(4):329–43.

    CAS  PubMed  Google Scholar 

  171. Burstein D, Gray M, Mosher T, Dardzinski B. Measures of molecular composition and structure in osteoarthritis. Radiol Clin North Am. 2009;47(4):675–86.

    PubMed  Google Scholar 

  172. Maroudas AI. Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature. 1976;260(5554):808–9.

    CAS  PubMed  Google Scholar 

  173. Donahue KM, Burstein D, Manning WJ, Gray ML. Studies of Gd-DTPA relaxivity and proton exchange rates in tissue. Magn Reson Med. 1994;32(1):66–76.

    CAS  PubMed  Google Scholar 

  174. Bashir A, Gray ML, Boutin RD, Burstein D. Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced MR imaging. Radiology. 1997;205(2):551–8.

    CAS  PubMed  Google Scholar 

  175. Gray ML, Burstein D, Kim YJ, Maroudas A. 2007 Elizabeth Winston Lanier Award Winner. Magnetic resonance imaging of cartilage glycosaminoglycan: basic principles, imaging technique, and clinical applications. J Orthop Res. 2008; 26(3):281–291

    Google Scholar 

  176. Burstein D, Velyvis J, Scott KT, Stock KW, Kim YJ, Jaramillo D, et al. Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med. 2001;45(1):36–41.

    CAS  PubMed  Google Scholar 

  177. Tiderius CJ, Tjornstrand J, Akeson P, Sodersten K, Dahlberg L, Leander P. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC): intra- and interobserver variability in standardized drawing of regions of interest. Acta Radiol. 2004;45(6):628–34.

    CAS  PubMed  Google Scholar 

  178. Li W, Scheidegger R, Wu Y, Edelman RR, Farley M, Krishnan N, et al. Delayed contrast-enhanced MRI of cartilage: comparison of nonionic and ionic contrast agents. Magn Reson Med. 2010;64(5):1267–73.

    CAS  PubMed  Google Scholar 

  179. Allen RG, Burstein D, Gray ML. Monitoring glycosaminoglycan replenishment in cartilage explants with gadolinium-enhanced magnetic resonance imaging. J Orthop Res. 1999;17(3):430–6.

    CAS  PubMed  Google Scholar 

  180. Williams A, Oppenheimer RA, Gray ML, Burstein D. Differential recovery of glycosaminoglycan after IL-1-induced degradation of bovine articular cartilage depends on degree of degradation. Arthritis Res Ther. 2003;5(2):R97–R105.

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Samosky JT, Burstein D, Eric Grimson W, Howe R, Martin S. Gray ML. Spatially-localized correlation of dGEMRIC-measured GAG distribution and mechanical stiffness in the human tibial plateau. J Orthop Res. 2005;23(1):93–101.

    CAS  PubMed  Google Scholar 

  182. Kurkijarvi JE, Nissi MJ, Kiviranta I, Jurvelin JS, Nieminen MT. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 characteristics of human knee articular cartilage: topographical variation and relationships to mechanical properties. Magn Reson Med. 2004;52(1):41–6.

    CAS  PubMed  Google Scholar 

  183. Mosher TJ, Dardzinski BJ. Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol. 2004;8(4):355–68.

    PubMed  Google Scholar 

  184. Dardzinski BJ, Mosher TJ, Li S, Van Slyke MA, Smith MB. Spatial variation of T2 in human articular cartilage. Radiology. 1997;205(2):546–50.

    CAS  PubMed  Google Scholar 

  185. Goodwin DW, Wadghiri YZ, Dunn JF. Micro-imaging of articular cartilage: T2, proton density, and the magic angle effect. Acad Radiol. 1998;5(11):790–8.

    CAS  PubMed  Google Scholar 

  186. Maier CF, Tan SG, Hariharan H, Potter HG. T2 quantitation of articular cartilage at 1.5 T. J Magn Reson Imaging. 2003;17(3):358–64.

    PubMed  Google Scholar 

  187. Mosher TJ, Smith H, Dardzinski BJ, Schmithorst VJ, Smith MB. MR imaging and T2 mapping of femoral cartilage: in vivo determination of the magic angle effect. AJR Am J Roentgenol. 2001;177(3):665–9.

    CAS  PubMed  Google Scholar 

  188. Mamisch TC, Hughes T, Mosher TJ, Mueller C, Trattnig S, Boesch C, et al. T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study. Skeletal Radiol. 2011:ePub.

  189. Xia Y, Moody JB, Alhadlaq H. Orientational dependence of T2 relaxation in articular cartilage: A microscopic MRI (microMRI) study. Magn Reson Med. 2002;48(3):460–9.

    PubMed  Google Scholar 

  190. Blumenkrantz G, Majumdar S. Quantitative magnetic resonance imaging of articular cartilage in osteoarthritis. Eur Cell Mater. 2007;13:76–86.

    CAS  PubMed  Google Scholar 

  191. Borthakur A, Shapiro EM, Beers J, Kudchodkar S, Kneeland JB, Reddy R. Sensitivity of MRI to proteoglycan depletion in cartilage: comparison of sodium and proton MRI. Osteoarthritis Cartilage. 2000;8(4):288–93.

    CAS  PubMed  Google Scholar 

  192. Mlynarik V, Trattnig S, Huber M, Zembsch A, Imhof H. The role of relaxation times in monitoring proteoglycan depletion in articular cartilage. J Magn Reson Imaging. 1999;10(4):497–502.

    CAS  PubMed  Google Scholar 

  193. Bolbos RI, Ma CB, Link TM, Majumdar S, Li X. In vivo T1rho quantitative assessment of knee cartilage after anterior cruciate ligament injury using 3 Tesla magnetic resonance imaging. Invest Radiol. 2008;43(11):782–8.

    PubMed  PubMed Central  Google Scholar 

  194. Zhao J, Li X, Bolbos RI, Link TM, Majumdar S. Longitudinal assessment of bone marrow edema-like lesions and cartilage degeneration in osteoarthritis using 3 T MR T1rho quantification. Skeletal Radiol. 2010;39(6):523–31.

    PubMed  PubMed Central  Google Scholar 

  195. Witschey WR, Borthakur A, Fenty M, Kneeland BJ, Lonner JH, McArdle EL, et al. T1rho MRI quantification of arthroscopically confirmed cartilage degeneration. Magn Reson Med. 2010;63(5):1376–82.

    PubMed  PubMed Central  Google Scholar 

  196. Holtzman DJ, Theologis AA, Carballido-Gamio J, Majumdar S, Li X, Benjamin C. T(1rho) and T(2) quantitative magnetic resonance imaging analysis of cartilage regeneration following microfracture and mosaicplasty cartilage resurfacing procedures. J Magn Reson Imaging. 2010;32(4):914–23.

    PubMed  PubMed Central  Google Scholar 

  197. Duvvuri U, Reddy R, Patel SD, Kaufman JH, Kneeland JB, Leigh JS. T1rho-relaxation in articular cartilage: effects of enzymatic degradation. Magn Reson Med. 1997;38(6):863–7.

    CAS  PubMed  Google Scholar 

  198. Akella SV, Regatte RR, Gougoutas AJ, Borthakur A, Shapiro EM, Kneeland JB, et al. Proteoglycan-induced changes in T1rho-relaxation of articular cartilage at 4 T. Magn Reson Med. 2001;46(3):419–23.

    CAS  PubMed  Google Scholar 

  199. Menezes NM, Gray ML, Hartke JR, Burstein D. T2 and T1rho MRI in articular cartilage systems. Magn Reson Med. 2004;51(3):503–9.

    CAS  PubMed  Google Scholar 

  200. Regatte RR, Akella SV, Wheaton AJ, Lech G, Borthakur A, Kneeland JB, et al. 3D-T1rho-relaxation mapping of articular cartilage: in vivo assessment of early degenerative changes in symptomatic osteoarthritic subjects. Acad Radiol. 2004;11(7):741–9.

    PubMed  Google Scholar 

  201. Regatte RR, Akella SV, Lonner JH, Kneeland JB, Reddy R. T1rho relaxation mapping in human osteoarthritis (OA) cartilage: comparison of T1rho with T2. J Magn Reson Imaging. 2006;23(4):547–53.

    PubMed  Google Scholar 

  202. Li X, Han ET, Ma CB, Link TM, Newitt DC, Majumdar S. In vivo 3 T spiral imaging based multi-slice T(1rho) mapping of knee cartilage in osteoarthritis. Magn Reson Med. 2005;54(4):929–36.

    PubMed  Google Scholar 

  203. Lesperance LM, Gray ML, Burstein D. Determination of fixed charge density in cartilage using nuclear magnetic resonance. J Orthop Res. 1992;10(1):1–13.

    CAS  PubMed  Google Scholar 

  204. Borthakur A, Mellon E, Niyogi S, Witschey W, Kneeland JB, Reddy R. Sodium and T1rho MRI for molecular and diagnostic imaging of articular cartilage. NMR Biomed. 2006;19(7):781–821.

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Reddy R, Insko EK, Leigh JS. Triple quantum sodium imaging of articular cartilage. Magn Reson Med. 1997;38(2):279–84.

    CAS  PubMed  Google Scholar 

  206. Madelin G, Lee JS, Inati S, Jerschow A, Regatte RR. Sodium inversion recovery MRI of the knee joint in vivo at 7 T. J Magn Reson. 2010;207(1):42–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Gold GE, Hargreaves BA, Stevens KJ, Beaulieu CF. Advanced magnetic resonance imaging of articular cartilage. Orthop Clin North Am. 2006; 37(3):331–347, vi

    PubMed  Google Scholar 

  208. Trattnig S, Welsch GH, Juras V, Szomolanyi P, Mayerhoefer ME, Stelzeneder D, et al. 23Na MR imaging at 7 T after knee matrix-associated autologous chondrocyte transplantation preliminary results. Radiology. 2010;257(1):175–84.

    PubMed  Google Scholar 

  209. Wang L, Wu Y, Chang G, Oesingmann N, Schweitzer ME, Jerschow A, et al. Rapid isotropic 3D-sodium MRI of the knee joint in vivo at 7 T. J Magn Reson Imaging. 2009;30(3):606–14.

    PubMed  PubMed Central  Google Scholar 

  210. Deng X, Farley M, Nieminen MT, Gray M, Burstein D. Diffusion tensor imaging of native and degenerated human articular cartilage. Magn Reson Imaging. 2007;25(2):168–71.

    PubMed  Google Scholar 

  211. Glaser C. New techniques for cartilage imaging: T2 relaxation time and diffusion-weighted MR imaging. Radiol Clin North Am. 2005; 43(4):641–653, vii.

    PubMed  Google Scholar 

  212. Xia Y, Farquhar T, Burton-Wurster N, Vernier-Singer M, Lust G, Jelinski LW. Self-diffusion monitors degraded cartilage. Arch Biochem Biophys. 1995;323(2):323–8.

    CAS  PubMed  Google Scholar 

  213. Friedrich KM, Mamisch TC, Plank C, Langs G, Marlovits S, Salomonowitz E, et al. Diffusion-weighted imaging for the follow-up of patients after matrix-associated autologous chondrocyte transplantation. Eur J Radiol. 2010;73(3):622–8.

    PubMed  Google Scholar 

  214. Mamisch TC, Menzel MI, Welsch GH, Bittersohl B, Salomonowitz E, Szomolanyi P, et al. Steady-state diffusion imaging for MR in-vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3 Tesla–preliminary results. Eur J Radiol. 2008;65(1):72–9.

    PubMed  Google Scholar 

  215. Quirbach S, Trattnig S, Marlovits S, Zimmermann V, Domayer S, Dorotka R, et al. Initial results of in vivo high-resolution morphological and biochemical cartilage imaging of patients after matrix-associated autologous chondrocyte transplantation (MACT) of the ankle. Skeletal Radiol. 2009;38(8):751–60.

    PubMed  Google Scholar 

  216. Miller KL, Hargreaves BA, Gold GE, Pauly JM. Steady-state diffusion-weighted imaging of in vivo knee cartilage. Magn Reson Med. 2004;51(2):394–8.

    PubMed  Google Scholar 

  217. de Visser SK, Bowden JC, Wentrup-Byrne E, Rintoul L, Bostrom T, Pope JM, et al. Anisotropy of collagen fibre alignment in bovine cartilage: comparison of polarised light microscopy and spatially resolved diffusion-tensor measurements. Osteoarthritis Cartilage. 2008;16(6):689–97.

    PubMed  Google Scholar 

  218. Raya JG, Melkus G, Adam-Neumair S, Dietrich O, Mutzel E, Kahr B, et al. Change of diffusion tensor imaging parameters in articular cartilage with progressive proteoglycan extraction. Invest Radiol. 2011;46(6):401–9.

    PubMed  Google Scholar 

  219. Azuma T, Nakai R, Takizawa O, Tsutsumi S. In vivo structural analysis of articular cartilage using diffusion tensor magnetic resonance imaging. Magn Reson Imaging. 2009;27(9):1242–8.

    PubMed  Google Scholar 

  220. Gold GE, Thedens DR, Pauly JM, Fechner KP, Bergman G, Beaulieu CF, et al. MR imaging of articular cartilage of the knee: new methods using ultrashort TEs. AJR Am J Roentgenol. 1998;170(5):1223–6.

    CAS  PubMed  Google Scholar 

  221. Freeman DM, Bergman G, Glover G. Short TE MR microscopy: accurate measurement and zonal differentiation of normal hyaline cartilage. Magn Reson Med. 1997;38(1):72–81.

    CAS  PubMed  Google Scholar 

  222. Bae WC, Dwek JR, Znamirowski R, Statum SM, Hermida JC, D'Lima DD, et al. Ultrashort echo time MR imaging of osteochondral junction of the knee at 3 T: identification of anatomic structures contributing to signal intensity. Radiology. 2010;254(3):837–45.

    PubMed  PubMed Central  Google Scholar 

  223. Koff MF, Potter HG. Noncontrast MR techniques and imaging of cartilage. Radiol Clin North Am. 2009;47(3):495–504.

    PubMed  Google Scholar 

  224. Gatehouse PD, Thomas RW, Robson MD, Hamilton G, Herlihy AH, Bydder GM. Magnetic resonance imaging of the knee with ultrashort TE pulse sequences. Magn Reson Imaging. 2004;22(8):1061–7.

    PubMed  Google Scholar 

  225. Williams A, Qian Y, Chu CR. UTE-T2 * mapping of human articular cartilage in vivo: a repeatability assessment. Osteoarthritis Cartilage. 2011;19(1):84–8.

    CAS  PubMed  Google Scholar 

  226. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Pan Y, Li Z, Xie T, Chu CR. Hand-held arthroscopic optical coherence tomography for in vivo high-resolution imaging of articular cartilage. J Biomed Opt. 2003;8(4):648–54.

    PubMed  Google Scholar 

  228. Herrmann JM, Pitris C, Bouma BE, Boppart SA, Jesser CA, Stamper DL, et al. High resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography. J Rheumatol. 1999;26(3):627–35.

    CAS  PubMed  Google Scholar 

  229. Chu CR, Williams A, Tolliver D, Kwoh CK, Bruno 3rd S, Irrgang JJ. Clinical optical coherence tomography of early articular cartilage degeneration in patients with degenerative meniscal tears. Arthritis Rheum. 2010;62(5):1412–20.

    PubMed  PubMed Central  Google Scholar 

  230. Chu CR, Lin D, Geisler JL, Chu CT, Fu FH, Pan Y. Arthroscopic microscopy of articular cartilage using optical coherence tomography. Am J Sports Med. 2004;32(3):699–709.

    PubMed  Google Scholar 

  231. Bear DM, Williams A, Chu CT, Coyle CH, Chu CR. Optical coherence tomography grading correlates with MRI T2 mapping and extracellular matrix content. J Orthop Res. 2010;28(4):546–52.

    PubMed  PubMed Central  Google Scholar 

  232. Eckstein F, Tieschky M, Faber SC, Haubner M, Kolem H, Englmeier KH, et al. Effect of physical exercise on cartilage volume and thickness in vivo: MR imaging study. Radiology. 1998;207(1):243–8.

    CAS  PubMed  Google Scholar 

  233. Eckstein F, Lemberger B, Gratzke C, Hudelmaier M, Glaser C, Englmeier KH, et al. In vivo cartilage deformation after different types of activity and its dependence on physical training status. Ann Rheum Dis. 2005;64(2):291–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Rubenstein JD, Kim JK, Henkelman RM. Effects of compression and recovery on bovine articular cartilage: appearance on MR images. Radiology. 1996;201(3):843–50.

    CAS  PubMed  Google Scholar 

  235. Xia Y, Wang N, Lee J, Badar F. Strain-dependent T(1) relaxation profiles in articular cartilage by MRI at microscopic resolutions. Magn Reson Med. 2011;65(6):1733–7.

    PubMed  PubMed Central  Google Scholar 

  236. Mosher TJ, Smith HE, Collins C, Liu Y, Hancy J, Dardzinski BJ, et al. Change in knee cartilage T2 at MR imaging after running: a feasibility study. Radiology. 2005;234(1):245–9.

    PubMed  Google Scholar 

  237. Grunder W, Wagner M, Werner A. MR-microscopic visualization of anisotropic internal cartilage structures using the magic angle technique. Magn Reson Med. 1998;39(3):376–82.

    CAS  PubMed  Google Scholar 

  238. Nag D, Liney GP, Gillespie P, Sherman KP. Quantification of T(2) relaxation changes in articular cartilage with in situ mechanical loading of the knee. J Magn Reson Imaging. 2004;19(3):317–22.

    PubMed  Google Scholar 

  239. Wong M, Carter DR. Articular cartilage functional histomorphology and mechanobiology: a research perspective. Bone. 2003;33(1):1–13.

    CAS  PubMed  Google Scholar 

  240. Wong BL, Sah RL. Mechanical asymmetry during articulation of tibial and femoral cartilages: local and overall compressive and shear deformation and properties. J Biomech. 2011;43(9):1689–95.

    Google Scholar 

  241. Hunter DJ, Eckstein F. Exercise and osteoarthritis. J Anat. 2009;214(2):197–207.

    PubMed  PubMed Central  Google Scholar 

  242. Tiderius CJ, Svensson J, Leander P, Ola T, Dahlberg L. dGEMRIC (delayed gadolinium-enhanced MRI of cartilage) indicates adaptive capacity of human knee cartilage. Magn Reson Med. 2004;51(2):286–90.

    PubMed  Google Scholar 

  243. Tiderius CJ. Another step towards the understanding of the earliest stages of osteoarthritis. Osteoarthritis Cartilage. 2009;17(12):1534–5.

    CAS  PubMed  Google Scholar 

  244. Anandacoomarasamy A, Giuffre BM, Leibman S, Caterson ID, Smith GS, Fransen M, et al. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage: clinical associations in obese adults. J Rheumatol. 2009;36(5):1056–62.

    PubMed  Google Scholar 

  245. Stehling C, Liebl H, Krug R, Lane NE, Nevitt MC, Lynch J, et al. Patellar cartilage: T2 values and morphologic abnormalities at 3.0-T MR imaging in relation to physical activity in asymptomatic subjects from the osteoarthritis initiative. Radiology. 254(2):509–20.

    PubMed  PubMed Central  Google Scholar 

  246. Reynolds G. Phys Ed: can running actually help your knees? New York Times. 2009 August 11.

  247. Hohmann E, Wortler K, Imhoff AB. MR imaging of the hip and knee before and after marathon running. Am J Sports Med. 2004;32(1):55–9.

    PubMed  Google Scholar 

  248. Krampla W, Mayrhofer R, Malcher J, Kristen KH, Urban M, Hruby W. MR imaging of the knee in marathon runners before and after competition. Skeletal Radiol. 2001;30(2):72–6.

    CAS  PubMed  Google Scholar 

  249. Shellock FG, Deutsch AL, Mink JH, Kerr R. Do asymptomatic marathon runners have an increased prevalence of meniscal abnormalities? An MR study of the knee in 23 volunteers. AJR Am J Roentgenol. 1991;157(6):1239–41.

    CAS  PubMed  Google Scholar 

  250. Stahl R, Luke A, Ma CB, Krug R, Steinbach L, Majumdar S, et al. Prevalence of pathologic findings in asymptomatic knees of marathon runners before and after a competition in comparison with physically active subjects-a 3.0 T magnetic resonance imaging study. Skeletal Radiol. 2008;37(7):627–38.

    PubMed  Google Scholar 

  251. Kessler MA, Glaser C, Tittel S, Reiser M, Imhoff AB. Recovery of the menisci and articular cartilage of runners after cessation of exercise: additional aspects of in vivo investigation based on 3-dimensional magnetic resonance imaging. Am J Sports Med. 2008;36(5):966–70.

    PubMed  Google Scholar 

  252. Schueller-Weidekamm C, Schueller G, Uffmann M, Bader TR. Does marathon running cause acute lesions of the knee? Evaluation with magnetic resonance imaging. Eur Radiol. 2006;16(10):2179–85.

    CAS  PubMed  Google Scholar 

  253. Mosher TJ, Liu Y, Torok CM. Functional cartilage MRI T2 mapping: evaluating the effect of age and training on knee cartilage response to running. Osteoarthritis Cartilage. 2010;18(3):358–64.

    CAS  PubMed  Google Scholar 

  254. Luke AC, Stehling C, Stahl R, Li X, Kay T, Takamoto S, et al. High-field magnetic resonance imaging assessment of articular cartilage before and after marathon running: does long-distance running lead to cartilage damage? Am J Sports Med. 2010;38(11):2273–80.

    PubMed  Google Scholar 

  255. Kiviranta I, Tammi M, Jurvelin J, Arokoski J. Saamanen AM. Helminen HJ Articular cartilage thickness and glycosaminoglycan distribution in the canine knee joint after strenuous running exercise Clin Orthop Relat Res. 1992;283:302–8.

    Google Scholar 

  256. Krampla WW, Newrkla SP, Kroener AH, Hruby WF. Changes on magnetic resonance tomography in the knee joints of marathon runners: a 10-year longitudinal study. Skeletal Radiol. 2008;37(7):619–26.

    PubMed  Google Scholar 

  257. Roos EM, Dahlberg L. Positive effects of moderate exercise on glycosaminoglycan content in knee cartilage: a four-month, randomized, controlled trial in patients at risk of osteoarthritis. Arthritis Rheum. 2005;52(11):3507–14.

    CAS  PubMed  Google Scholar 

  258. Buckwalter JA. Chondral and osteochondral injuries: mechanisms of injury and repair responses. Op Tech Orthop. 1997;7(4):263–9.

    Google Scholar 

  259. Burstein D, Gray M. New MRI techniques for imaging cartilage. J Bone Joint Surg Am. 2003; 85-A Suppl 2:70–7.

    PubMed  Google Scholar 

  260. Tiderius CJ, Olsson LE, Nyquist F, Dahlberg L. Cartilage glycosaminoglycan loss in the acute phase after an anterior cruciate ligament injury: delayed gadolinium-enhanced magnetic resonance imaging of cartilage and synovial fluid analysis. Arthritis Rheum. 2005;52(1):120–7.

    CAS  PubMed  Google Scholar 

  261. Li X, Ma BC, Bolbos RI, Stahl R, Lozano J, Zuo J, et al. Quantitative assessment of bone marrow edema-like lesion and overlying cartilage in knees with osteoarthritis and anterior cruciate ligament tear using MR imaging and spectroscopic imaging at 3 Tesla. J Magn Reson Imaging. 2008;28(2):453–61.

    PubMed  PubMed Central  Google Scholar 

  262. Bolbos RI, Link TM, Ma CB, Majumdar S, Li X. T1rho relaxation time of the meniscus and its relationship with T1rho of adjacent cartilage in knees with acute ACL injuries at 3 T. Osteoarthritis Cartilage. 2009;17(1):12–8.

    CAS  PubMed  Google Scholar 

  263. Young AA, Stanwell P, Williams A, Rohrsheim JA, Parker DA, Giuffre B, et al. Glycosaminoglycan content of knee cartilage following posterior cruciate ligament rupture demonstrated by delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC). A case report. J Bone Joint Surg Am. 2005;87(12):2763–7.

    PubMed  Google Scholar 

  264. Williams A, Gillis A, McKenzie C, Po B, Sharma L, Micheli L, et al. Glycosaminoglycan distribution in cartilage as determined by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC): potential clinical applications. AJR Am J Roentgenol. 2004;182(1):167–72.

    PubMed  Google Scholar 

  265. Tiderius CJ, Olsson LE, Leander P, Ekberg O, Dahlberg L. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) in early knee osteoarthritis. Magn Reson Med. 2003;49(3):488–92.

    PubMed  Google Scholar 

  266. Owman H, Tiderius CJ, Neuman P, Nyquist F, Dahlberg LE. Association between findings on delayed gadolinium-enhanced magnetic resonance imaging of cartilage and future knee osteoarthritis. Arthritis Rheum. 2008;58(6):1727–30.

    PubMed  Google Scholar 

  267. Dunn TC, Lu Y, Jin H, Ries MD, Majumdar S. T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology. 2004;232(2):592–8.

    PubMed  Google Scholar 

  268. Stahl R, Luke A, Li X, Carballido-Gamio J, Ma CB, Majumdar S, et al. T1rho, T2 and focal knee cartilage abnormalities in physically active and sedentary healthy subjects versus early OA patients–a 3.0-Tesla MRI study. Eur Radiol. 2009;19(1):132–43.

    PubMed  Google Scholar 

  269. Majumdar S, Li X, Blumenkrantz G, Saldanha K, Ma CB, Kim H, et al. MR imaging and early cartilage degeneration and strategies for monitoring regeneration. J Musculoskelet Neuronal Interact. 2006;6(4):382–4.

    CAS  PubMed  Google Scholar 

  270. Li X. Benjamin Ma C, Link TM, Castillo DD, Blumenkrantz G, Lozano J, et al. In vivo T(1rho) and T(2) mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI. Osteoarthritis Cartilage. 2007;15(7):789–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  271. Kim YJ, Jaramillo D, Millis MB, Gray ML, Burstein D. Assessment of early osteoarthritis in hip dysplasia with delayed gadolinium-enhanced magnetic resonance imaging of cartilage. J Bone Joint Surg Am. 2003; 85-A(10):1987–92.

    PubMed  Google Scholar 

  272. Williams A, Sharma L, McKenzie CA, Prasad PV, Burstein D. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage in knee osteoarthritis: findings at different radiographic stages of disease and relationship to malalignment. Arthritis Rheum. 2005;52(11):3528–35.

    CAS  PubMed  Google Scholar 

  273. Gomoll AH, Farr J, Gillogly SD, Kercher J, Minas T. Surgical management of articular cartilage defects of the knee. J Bone Joint Surg Am. 2010;92(14):2470–90.

    CAS  PubMed  Google Scholar 

  274. Williams RJ, Gamradt SC. Articular cartilage repair using a resorbable matrix scaffold. Instr Course Lect. 2008;57:563–71.

    PubMed  Google Scholar 

  275. Cole BJ, Farr J, Winalski CS, Hosea T, Richmond J, Mandelbaum B, et al. Outcomes After a Single-Stage Procedure for Cell-Based Cartilage Repair: A Prospective Clinical Safety Trial With 2-year Follow-up. Am J Sports Med. 2011;39(6):1170–9.

    PubMed  Google Scholar 

  276. Trattnig S, Domayer S, Welsch GW, Mosher T, Eckstein F. MR imaging of cartilage and its repair in the knee–a review. Eur Radiol. 2009;19(7):1582–94.

    CAS  PubMed  Google Scholar 

  277. White LM, Sussman MS, Hurtig M, Probyn L, Tomlinson G, Kandel R. Cartilage T2 assessment: differentiation of normal hyaline cartilage and reparative tissue after arthroscopic cartilage repair in equine subjects. Radiology. 2006;241(2):407–14.

    PubMed  Google Scholar 

  278. Welsch GH, Mamisch TC, Domayer SE, Dorotka R, Kutscha-Lissberg F, Marlovits S, et al. Cartilage T2 assessment at 3-T MR imaging: in vivo differentiation of normal hyaline cartilage from reparative tissue after two cartilage repair procedures–initial experience. Radiology. 2008;247(1):154–61.

    PubMed  Google Scholar 

  279. Kurkijarvi JE, Mattila L, Ojala RO, Vasara AI, Jurvelin JS, Kiviranta I, et al. Evaluation of cartilage repair in the distal femur after autologous chondrocyte transplantation using T2 relaxation time and dGEMRIC. Osteoarthritis Cartilage. 2007;15(4):372–8.

    CAS  PubMed  Google Scholar 

  280. Domayer SE, Kutscha-Lissberg F, Welsch G, Dorotka R, Nehrer S, Gabler C, et al. T2 mapping in the knee after microfracture at 3.0 T: correlation of global T2 values and clinical outcome - preliminary results. Osteoarthritis Cartilage. 2008;16(8):903–8.

    CAS  PubMed  Google Scholar 

  281. Gillis A, Bashir A, McKeon B, Scheller A, Gray ML, Burstein D. Magnetic resonance imaging of relative glycosaminoglycan distribution in patients with autologous chondrocyte transplants. Invest Radiol. 2001;36(12):743–8.

    CAS  PubMed  Google Scholar 

  282. Watanabe A, Wada Y, Obata T, Ueda T, Tamura M, Ikehira H, et al. Delayed gadolinium-enhanced MR to determine glycosaminoglycan concentration in reparative cartilage after autologous chondrocyte implantation: preliminary results. Radiology. 2006;239(1):201–8.

    PubMed  Google Scholar 

  283. Trattnig S, Burstein D, Szomolanyi P, Pinker K, Welsch GH, Mamisch TC. T1(Gd) gives comparable information as Delta T1 relaxation rate in dGEMRIC evaluation of cartilage repair tissue. Invest Radiol. 2009;44(9):598–602.

    PubMed  Google Scholar 

  284. Trattnig S, Marlovits S, Gebetsroither S, Szomolanyi P, Welsch GH, Salomonowitz E, et al. Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) for in vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3.0 T: Preliminary results. J Magn Reson Imaging. 2007;26(4):974–82.

    PubMed  Google Scholar 

  285. Trattnig S, Mamisch TC, Pinker K, Domayer S, Szomolanyi P, Marlovits S, et al. Differentiating normal hyaline cartilage from post-surgical repair tissue using fast gradient echo imaging in delayed gadolinium-enhanced MRI (dGEMRIC) at 3 Tesla. Eur Radiol. 2008;18(6):1251–9.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl S. Winalski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winalski, C.S., Rajiah, P. The evolution of articular cartilage imaging and its impact on clinical practice. Skeletal Radiol 40, 1197–1222 (2011). https://doi.org/10.1007/s00256-011-1226-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-011-1226-z

Keywords

Navigation