Skip to main content
Log in

Impact of tailings from the Kilembe copper mining district on Lake George, Uganda

  • Original Article
  • Published:
Environmental Geology

Abstract

The abandoned Kilembe copper mine in western Uganda is a source of contaminants, mobilised from mine tailings into R. Rukoki flowing through a belt of wetlands into Lake George. Water and sediments were investigated on the lakeshore and the lakebed. Metal associations in the sediments reflect the Kilembe sulphide mineralisation. Enrichment of metals was compared between lakebed sediments, both for wet and dry seasons. Total C in a lakebed core shows a general increment, while Cu and Co decrease with depth. The contaminants are predominant (> 65%) in the ≤ 63 μm sediment size range with elevated Cu and Zn (> 28%), while Ni, Pb and Co are low (< 18%) in all the fractions. Sequential extraction of Fe for lakeshore sediment samples reveals low Fe mobility. Relatively higher mobility and biological availability is seen for Co, Cu and S. Heavy metal contents in lake waters are not an immediate risk to the aquatic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alloway BJ (ed) (1990) Heavy metals in soils. Halsted Press, Blackie, p 339

  • Barnes JW, Barbour EA, Smit JS (1959) Symposium on the geology of copper—Africa, Kilembe copper mine—Uganda. Unpubl report JWB/77 Geol Surv Uganda

  • Bird HH (1968) Falconbridge’s copper operations in Uganda. Can Min Metall Bull 61:1075–1082

    Google Scholar 

  • BRGM (1994) Environmental impact study (Kasese, Uganda). Bureau de Recherches Géologique et Miniéres (BRGM), France report R 37058

  • Bugenyi FWB (1982) Copper pollution studies in Lakes George and Edward, Uganda: the distribution of Cu, Cd, and Fe in the water and sediments. Environ Pollut B3:129–138

    Google Scholar 

  • Cahen L, Snelling NJ, Delhal J, Vail JR (1984) The geochronology and evolution of Africa. Clarendon Press, Oxford, p 195

    Google Scholar 

  • Davis GR (1969) Aspects of the metamorphosed sulphide ores at Kilembe, Uganda. In: James CH (ed) Sedimentary ores ancient and modern (revised): proceedings of the 15th inter-University geol Congr, Leicester 1967, pp 273–295

  • de Anta RC, Otero AP (1994) Soils affected by acid mine waters in Galicia (NW Spain). Water Air Soil Pollut 73:241–263

    Google Scholar 

  • Dyck S, Peschke G (1995) Grundlagen der Hydrologie 3 Aufl. Verlag für Bauwesen, Berlin, p 536

    Google Scholar 

  • Ebinger CJ (1989) Tectonic development of the western branch of the East African Rift System. In: Morley CK, Ngenoh DK, Ego JK (1999) Introduction to the East African Rift System. In: Morley CK (ed) Geoscience of Rift Systems—evolution of East Africa: AAPG Studies in Geology, vol 44, pp 1–18

  • Fergusson JE (1990) The heavy elements: chemistry, environmental impact and health effects. Pergamon, Oxford, p 614

    Google Scholar 

  • Finney BP, Huh CA (1989) High resolution sedimentary records of heavy metals from the Santa Monica and San Pedro Basins, California. Mar Pollut Bull 20:181–187

    Article  Google Scholar 

  • Flemming CA, Trevors JT (1988) Copper toxicity and chemistry in the environment: a review. Water Air Soil Pollut 44:143–158

    Article  Google Scholar 

  • Förstner U (1981) Trace metals in fresh waters (with particular reference to mine effluents). In: Wolf KH (ed) Handbook of strata-bound and stratiform ore deposits, vol 9. Elsevier, Amsterdam, pp 271–303

  • Förstner U, Wittmann GTW (1979) Metal pollution in the aquatic environment. Springer, Berlin Heidelberg New York, p 486

    Google Scholar 

  • Guderian R, Gunkel G (1999) Handbuch der Umweltveränderungen und Ökotoxikologie, Band 3a: Aquatische Systeme: Grundlagen—Physikalische Belastungsfaktoren—Anorganische Stoffeinträge. Springer, Berlin Heidelberg New York, p 330

    Google Scholar 

  • Hartwig T, Owor M, Muwanga A, Zachmann D, Pohl W (2005) Lake George as a sink for contaminants derived from Kilembe copper mining area, western Uganda. Min Water Environ 24(3):114–123

    Article  Google Scholar 

  • Haworth EY (1977) The sediments of Lake George (Uganda), V: the diatom assemblages in relation to the ecological history. Arch Hydrobiol 80(2):200–215

    Google Scholar 

  • Hemond HF, Fechner EJ (1994) Chemical fate and transport in the environment. Academic, New York

    Google Scholar 

  • Hessen DO, Tranvik LJ (1998) Aquatic humic substances. Springer, Berlin Heidelberg New York, p 346

    Google Scholar 

  • Iskandar IK, Selim MH (1999) Fate and transport of heavy metals in the Vadose zone. Lewis-CRC-Press, Boca Raton, p 345

    Google Scholar 

  • Jacob G, Dunemann L, Zachmann D, Brasser T (1990) Untersuchungen zur Bindungsform von Schwermetallen in ausgewählten Abfällen. Abfallwirt J 2(7/8):451–457

    Google Scholar 

  • Jenne EA (1968) Controls on Mn, Fe, Co, Ni, Cu and Zn concentrations in soils and water; the significant role of hydrous Mn and Fe oxides. Am Chem Soc Adv Chem Ser 73:337–387

    Google Scholar 

  • Lottermoser BG, Ashley PM, Lawie DC (1999) Environmental geochemistry of the Gulf Creek copper mine area, north-eastern New South Wales, Australia. J Environ Geol 39(1):61–74

    Article  Google Scholar 

  • Miall AD (1996) The geology of fluvial deposits. Springer, Berlin Heidelberg New York, p 586

    Google Scholar 

  • Müller HW, Schwaighofer B, Kalman W (1994) Heavy metal contents in river sediments. Water Air Soil Pollut 72:191–203

    Article  Google Scholar 

  • Narwal RP, Singh BR (1998) Effect of organic materials on partitioning, extractability and plant uptake of metals in an alum shale soil. Water Air Soil Pollut 103:405–421

    Article  Google Scholar 

  • Nickson R, McArthur J, Burgess W (1998) Arsenic poisoning of Bangladesh groundwater. Nature 395:338

    Article  Google Scholar 

  • Nirel PMV, Morel FMM (1990) Pitfalls of sequential extractions. Water Res 24:1055–1056

    Article  Google Scholar 

  • Nordstrom DK, Southam G (1997) Geomicrobiology of sulfide mineral oxidation. In: Banfield JF, Nealson KH (eds) Geomicrobiological review in mineralogy, vol 35. Mineralogical Society of America, Washington, pp 361–390

  • Plumlee GS, Logsdon MJ (eds) (1999) The environmental geochemistry of mineral deposits. Part A: processes, techniques and health issues. Rev Econ Geol 6A:371

    Google Scholar 

  • Renberg I (1991) The HON-Kajak sediment corer. J Palaeolimn 6:167–170

    Google Scholar 

  • Neumann-Mahlkau P (1993) Acidification by pyrite weathering on mine waste stockpiles, Ruhr District, Germany. Eng Geol 34:125–134

    Article  Google Scholar 

  • Rashid MA, Leonard JD (1973) Modifications in the solubility and precipitation behaviour of various metals as a result of their interaction with sedimentary humic acid. Chem Geol 11:89–97

    Article  Google Scholar 

  • Salbu B, Krekling T, Oughton DH (1988) Characterization of radioactive particles in the environment. Analyst 123:843–849

    Article  Google Scholar 

  • Santschi PH (1984) Particle flux and trace metal residence times in natural waters. Limnol Oceanogr 29(5):1100–1108

    Article  Google Scholar 

  • Sengupta M (1993) Environmental impacts of mining—monitoring, restoration, and control. Lewis, London, p 494

    Google Scholar 

  • Singer PC, Stumm W (1970) Acidic mine drainage: the rate determining step. Science 167:1121–1123

    Article  Google Scholar 

  • Stevenson FJ (1991) Organic matter–micronutrient reactions in soil. In: Mortvedt JJ (ed) Micronutrients in agriculture. SSSA, Madison, pp 145–186

    Google Scholar 

  • Stumm M, Morgan JJ (1996) Aquatic chemistry. Wiley-Science, New York, p 1022

    Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851

    Article  Google Scholar 

  • Turner A, Olsen YS (2000) Bioavailability of trace metals in contaminated estuarine sediments: a comparison of chemical and enzymatic extractants. Estuar Coast Shelf Sci 51:717–728

    Article  Google Scholar 

  • Viner AB (1977) The sediments of Lake George (Uganda), IV: vertical distribution of chemical features in relation to ecological history and nutrient recycling. Arch Hydrobiol 80(1):40–69

    Google Scholar 

  • Warden AJ (1985) Reappraisal of geological setting and potential of Kilembe copper mine, Uganda. Trans Inst Min Metall B94:94–105

    Google Scholar 

  • Wohlrab B, Ernstberger H, Meuser A, Sokollek V (1992) Landschaftswasserhaushalt. Verlag Paul Parey, Hamburg, p 352

    Google Scholar 

  • Zachmann D, Block R (1994) Studies on the availability of toxic heavy elements in soils and sediments in the vicinity of a lead smelting site (Germany). Water Air Soil Pollut 78:317–334

    Article  Google Scholar 

Download references

Acknowledgements

This research has been funded by the Volkswagen Foundation (Hanover, Germany). The International Foundation of Science (IFS) is acknowledged for providing equipment, literature and for sponsoring a science conference trip to Malaysia (MO). Queen Elizabeth National Park, Mweya kindly helped with a speedboat on the lake. We do acknowledge all the data and oral communications from J. Russell and D. Schnurrenberger. We also wish to thank the reviewers and editors for their contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Owor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owor, M., Hartwig, T., Muwanga, A. et al. Impact of tailings from the Kilembe copper mining district on Lake George, Uganda. Environ Geol 51, 1065–1075 (2007). https://doi.org/10.1007/s00254-006-0398-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-006-0398-7

Keywords

Navigation