Skip to main content
Log in

A large-scale whole-genome sequencing analysis reveals false positives of bacterial essential genes

  • Genomics, Transcriptomics, Proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Essential genes are crucial for bacterial viability and represent attractive targets for novel anti-pathogen drug discovery. However, essential genes determined by the transposon insertion sequencing (Tn-seq) approach often contain many false positives. We hypothesized that some of those false positives are genes that are actually deleted from the genome, so they do not present any transposon insertion in the course of Tn-seq analysis. Based on this assumption, we performed a large-scale whole-genome sequencing analysis for the bacterium of interest. Our analysis revealed that some “essential genes” are indeed removed from the analyzed bacterial genomes. Since these genes were kicked out by bacteria, they should not be defined as essential. Our work showed that gene deletion is one of the false positive sources of essentiality determination, which is apparently underestimated in previous studies. We suggest subtracting the genome backgrounds before the evaluation of Tn-seq, and created a list of false positive gene essentiality as a reference for the downstream application.

Key points

Discovery of false positives of essential genes defined previously through the analyses of a large scale of whole-genome sequencing data

These false positives are the results of gene deletions in the studied genomes

Sequencing the target genome before Tn-seq analysis is of importance while some studies neglected it

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

SRA data files analyzed in this study are listed in Supplementary Table S1.

Code availability

Used software was listed in the section of “Materials and methods.” Codes can be found at GitHub repository (https://github.com/daiweijun/Whole-genome-sequencing-analysis.git).

References

  • Andrews S (2010) FastQC: A quality control tool for high throughput sequence data. Bioinformatics, Babraham Institute, Cambridge, UK

  • Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko K, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: The Keio collection. Mol Syst Biol 2(0008):570

    Google Scholar 

  • Cain AK, Barquist L, Goodman AL, Paulsen IT, Parkhill J, van Opijnen T (2020) A decade of advances in transposon-insertion sequencing. Nat Rev Genet:1-15

  • Cameron DE, Urbach JM, Mekalanos JJ (2008) A defined transposon mutant library and its use in identifying motility genes in Vibrio cholerae. PNAS 105(25):8736–8741

    Article  Google Scholar 

  • Christen B, Abeliuk E, Collier JM, Kalogeraki VS, Passarelli B, Coller JA, Fero MJ, McAdams HH, Shapiro L (2011) The essential genome of a bacterium. Mol Syst Biol 7:528. https://doi.org/10.1038/msb.2011.58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DeJesus MA, Ioerger TR (2013) A hidden Markov model for identifying essential and growth-defect regions in bacterial genomes from transposon insertion sequencing data. BMC Bioinformatics 14(1):303

    Article  CAS  Google Scholar 

  • DeJesus MA, Ioerger TR (2016) Normalization of transposon-mutant library sequencing datasets to improve identification of conditionally essential genes. J Bioinf Comput Biol 14(03):1642004

    Article  CAS  Google Scholar 

  • DeJesus MA, Zhang YJ, Sassetti CM, Rubin EJ, Sacchettini JC, Ioerger TR (2013) Bayesian analysis of gene essentiality based on sequencing of transposon insertion libraries. Bioinformatics 29(6):695–703. https://doi.org/10.1093/bioinformatics/btt043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dotsch A, Pommerenke C, Bredenbruch F, Geffers R, Haussler S (2009) Evaluation of a microarray-hybridization based method applicable for discovery of single nucleotide polymorphisms (SNPs) in the Pseudomonas aeruginosa genome. BMC Genomics 10:29. https://doi.org/10.1186/1471-2164-10-29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gawronski JD, Wong SM, Giannoukos G, Ward DV, Akerley BJ (2009) Tracking insertion mutants within libraries by deep sequencing and a genome-wide screen for Haemophilus genes required in the lung. PNAS 106(38):16422–16427

    Article  Google Scholar 

  • Hutchison CA, Merryman C, Sun L, Assad-Garcia N, Richter RA, Smith HO, Glass JI (2019) Polar effects of transposon insertion into a minimal bacterial genome. J Bacteriol 201(19):e00185-e219

    Article  CAS  Google Scholar 

  • Judson N, Mekalanos JJ (2000) Transposon-based approaches to identify essential bacterial genes. Trends Microbiol 8(11):521–526

    Article  CAS  Google Scholar 

  • Juhas M, Eberl L, Church GM (2012) Essential genes as antimicrobial targets and cornerstones of synthetic biology. Trends Biotechnol 30(11):601–607

    Article  CAS  Google Scholar 

  • Juhas M, Eberl L, Glass JI (2011) Essence of life: essential genes of minimal genomes. Trends Cell Biol 21(10):562–568

    Article  CAS  Google Scholar 

  • Kang Y, Durfee T, Glasner JD, Qiu Y, Frisch D, Winterberg KM, Blattner FR (2004) Systematic mutagenesis of the Escherichia coli genome. J Bacteriol 186(15):4921–4930

    Article  CAS  Google Scholar 

  • Klockgether J, Munder A, Neugebauer J, Davenport CF, Stanke F, Larbig KD, Heeb S, Schock U, Pohl TM, Wiehlmann L, Tummler B (2010) Genome diversity of Pseudomonas aeruginosa PAO1 laboratory strains. J Bacteriol 192(4):1113–1121. https://doi.org/10.1128/jb.01515-09

    Article  PubMed  CAS  Google Scholar 

  • Koskiniemi S, Sun S, Berg OG, Andersson DI (2012) Selection-driven gene loss in bacteria. PLoS Genet 8(6):e1002787

    Article  CAS  Google Scholar 

  • Kuo C-H, Ochman H (2009) Deletional bias across the three domains of life. Genome Biol Evol 1:145–152

    Article  CAS  Google Scholar 

  • Lee SA, Gallagher LA, Thongdee M, Staudinger BJ, Lippman S, Singh PK, Manoil C (2015) General and condition-specific essential functions of Pseudomonas aeruginosa. PNAS 112(16):5189–5194

    Article  CAS  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760

    Article  CAS  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

    Article  CAS  Google Scholar 

  • Lobkovsky AE, Wolf YI, Koonin EV (2013) Gene frequency distributions reject a neutral model of genome evolution. Genome Biol Evol 5(1):233–242

    Article  CAS  Google Scholar 

  • Luo H, Gao F, Lin Y (2015) Evolutionary conservation analysis between the essential and nonessential genes in bacterial genomes. Sci Rep 5(1):1–8

    Google Scholar 

  • Luo H, Lin Y, Gao F, Zhang C-T, Zhang R (2014) DEG 10, an update of the database of essential genes that includes both protein-coding genes and noncoding genomic elements. Nucleic Acids Res 42(D1):D574–D580

    Article  CAS  Google Scholar 

  • Mira A, Ochman H, Moran NA (2001) Deletional bias and the evolution of bacterial genomes. Trends Genet 17(10):589–596. https://doi.org/10.1016/s0168-9525(01)02447-7

    Article  PubMed  CAS  Google Scholar 

  • Murima P, McKinney JD, Pethe K (2014) Targeting bacterial central metabolism for drug development. Chem Biol 21(11):1423–1432

    Article  CAS  Google Scholar 

  • Pechter KB, Gallagher L, Pyles H, Manoil CS, Harwood CS (2016) Essential genome of the metabolically versatile alphaproteobacterium Rhodopseudomonas palustris. J Bacteriol 198(5):867–76. https://doi.org/10.1128/JB.00771-15

    Article  PubMed Central  CAS  Google Scholar 

  • Puigbò P, Lobkovsky AE, Kristensen DM, Wolf YI, Koonin EV (2014) Genomes in turmoil: quantification of genome dynamics in prokaryote supergenomes. BMC Biol 12(1):66

    Article  Google Scholar 

  • Rocha EP (2004) Order and disorder in bacterial genomes. Curr Opin Microbiol 7(5):519–527. https://doi.org/10.1016/j.mib.2004.08.006

    Article  PubMed  CAS  Google Scholar 

  • Sela I, Wolf YI, Koonin EV (2016) Theory of prokaryotic genome evolution. PNAS 113(41):11399–11407

    Article  CAS  Google Scholar 

  • Van Opijnen T, Bodi KL, Camilli A (2009) Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat Methods 6(10):767

    Article  CAS  Google Scholar 

  • Van Opijnen T, Camilli A (2013) Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms. Nat Rev Microbiol 11(7):435–442

    Article  CAS  Google Scholar 

  • Zhang YJ, Loerger TR, Huttenhower C, Long JE, Sassetti CM, Sacchettini JC, Rubin EJ (2012) Global assessment of genomic regions required for growth in Mycobacterium tuberculosis. PLoS Path 8(9)

  • Zomer A, Burghout P, Bootsma HJ, Hermans PW, van Hijum SA (2012) ESSENTIALS: software for rapid analysis of high throughput transposon insertion sequencing data. PloS one 7(8)

Download references

Acknowledgements

Claudine Baraquet (Université de Toulon, France) is acknowledged for helpful discussing the determination of gene deletions basing on read counts. We thank E. Peter Greenberg (University of Washington, USA) for kindly donating the P. aeruginosa PAO1-UW strain. Our lab members are highly appreciable for kind supports in many aspects of this work.

Funding

This work was founded by the National Natural Science Foundation of China (31771341) and by Guangdong Province Science and Technology Innovation Strategy Special Fund (grant no: 2018B020206001).

Author information

Authors and Affiliations

Authors

Contributions

Y.L. and W.D. designed and wrote the manuscript. B.J. conducted the molecular experiments. Y.L. and W.D. performed the bioinformatic analyses. All authors reviewed the manuscript.

Corresponding author

Correspondence to Weijun Dai.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

All authors have read and approved the final manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Jiang, B. & Dai, W. A large-scale whole-genome sequencing analysis reveals false positives of bacterial essential genes. Appl Microbiol Biotechnol 106, 341–347 (2022). https://doi.org/10.1007/s00253-021-11702-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-021-11702-3

Keywords

Navigation