Skip to main content

Advertisement

Log in

A recombinant fungal defensin-like peptide-P2 combats Streptococcus dysgalactiae and biofilms

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Streptococcus dysgalactiae, considered one of the main pathogens that causes bovine mastitis, is a serious threat to humans and animals. However, the excessive use of antibiotics and the characteristic of S. dysgalactiae forming biofilms in mastitic teat canal have serious clinical implications. In this study, in vivo and in vitro multiple mechanisms of action of P2, a mutant of fungal defensin plectasin, against S. dysgalactiae were systematically and comprehensively investigated for the first time. P2 showed potent antibacterial activity against S. dysgalactiae (minimum inhibitory concentration, MIC = 0.23–0.46 μM) and rapid bactericidal action by 3.0 lg units reduction in 2–4 h. No resistant mutants appeared after 30-d serial passage of S. dysgalactiae in the presence of P2. The results of electron microscopy and flow cytometer showed that P2 induced membrane damage of S. dysgalactiae, causing the leakage of cellular content and eventually cell death. Besides, P2 effectively inhibited early biofilm formation, eradicated mature biofilms, and killed 99.9% persisters which were resistant to 100 × MIC vancomycin; and confocal laser scanning microscopy (CLSM) also revealed the potent antibacterial and antibiofilm activity of P2 (the thickness of biofilm reduced from 18.82 to 7.94 μm). The in vivo therapeutic effect of P2 in mouse mastitis model showed that it decreased the number of mammary bacteria and alleviated breast inflammation by regulating cytokines and inhibiting bacterial proliferation, which were superior to vancomycin. These data indicated that P2 maybe a potential candidate peptide for mastitis treatment of S. dysgalactiae infections.

Key points

P2 showed potential in vitro antibacterial characteristics towards S. dysgalactiae.

•P2 eradicated biofilms, killed persisters, and induced cell death of S. dysgalactiae.

•P2 could effectively protect mice from S. dysgalactiae infection in gland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  • Alves-Barroco C, Roma-Rodrigues C, Raposo RL, Brás C, Diniz M, Caço J, Costa PM, Santos-Sanches I, Fernandes AR (2018) Streptococcus dysgalactiae subsp. dysgalactiae isolated from milk of the bovine udder as emerging pathogens: in vitro and in vivo infection of human cells and zebrafish as biological models. Microbiology 8:e00623

  • Brouillette E, Malouin FO (2005) The pathogenesis and control of Staphylococcus aureus-induced mastitis: study models in the mouse. Microbes Infect 7:560–568

    Article  PubMed  Google Scholar 

  • Clinical and Laboratory Standard Institute (2014) Performance standard for antimicrobial susceptibility test: twenty-four informational supplement [S]. CLSI Document M100-S24. CLSI, Wayne, PA

  • Clinical and Laboratory Standard Institute (2014) Performance Standard for Antimicrobial Susceptibility Test: Twenty-Four Informational Supplement [S]. CLSI Document M100-S24. CLSI, Wayne, PA

  • Cui H, Li W, Li C, Vittayapadung S, Lin L (2016) Liposome containing cinnamon oil with antibacterial activity against methicillin-resistant Staphylococcus aureus biofilm. Biofouling 32:215–225

    Article  CAS  PubMed  Google Scholar 

  • De Breij A, Riool M, Cordfunke RA, Malanovic N, De Boer L, Koning RI, Ravensbergen E, Franken M, Tobias VDH, Boekema BK (2018) The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci Transl Med 10:eaan4044

    Article  PubMed  Google Scholar 

  • De Jong A, Garch FE, Simjee S, Moyaert H, Rose M, Youala M, Siegwart E (2018) Monitoring of antimicrobial susceptibility of udder pathogens recovered from cases of clinical mastitis in dairy cows across Europe: VetPath results. Vet Microbiol 213:73–81

    Article  PubMed  Google Scholar 

  • Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720

    Article  CAS  PubMed  Google Scholar 

  • Geng H, Zou W, Zhang M, Xu L, Xu Y (2020) Evaluation of phage therapy in the treatment of Staphylococcus aureus-induced mastitis in mice. Folia Microbiol 65:339–351

    Article  CAS  Google Scholar 

  • Genteluci GL, Silva LG, Souza MC, Glatthardt T, de Mattos MC, Ejzemberg R, Alviano CS, Figueiredo AM, Ferreira-Carvalho BT (2015) Assessment and characterization of biofilm formation among human isolates of Streptococcus dysgalactiae subsp. equisimilis. Int J Med Microbiol 305:937–947

  • Gomes F, Saavedra MJ, Henriques M (2016) Bovine mastitis disease/pathogenicity: evidence of the potential role of microbial biofilms. Pathog Dis 74:ftw006

    Article  PubMed  Google Scholar 

  • Gorr SU, Flory CM, Schumacher RJ (2019) In vivo activity and low toxicity of the second-generation antimicrobial peptide DGL13K. PLoS One 14:e0216669

  • Hale JD, Hancock RE (2007) Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti-Infect Ther 5:951–959

    Article  CAS  PubMed  Google Scholar 

  • Haruno Y, Hidenori M, Somay YM, Takada Y (2011) A CD46 transgenic mouse model for studying the histopathology of arthritis caused by subcutaneous infection with Streptococcus dysgalactiae subspecies equisimilis. J Med Microbiol 60:1860–1868

  • Herrera R, Morris M, Rosbe K, Feng Z, Weinberg A, Tugizov S (2016) Human beta-defensins 2 and -3 cointernalize with human immunodeficiency virus via heparan sulfate proteoglycans and reduce infectivity of intracellular virions in tonsil epithelial cells. Virology 487:172–187

    Article  CAS  PubMed  Google Scholar 

  • Horiuk Y, Kukhtyn M, Kovalenko V, Kornienko L, Liniichuk N (2019) Biofilm formation in bovine mastitis pathogens and the effect on them of antimicrobial drugs. IJM&P 10:897–910

    Google Scholar 

  • Jarczak J, Kościuczuk EM, Lisowski P, Strzałkowska N, Jóźwik A, Horbańczuk JA, Krzyżewski J, Zwierzchowski L, Bagnicka E (2013) Defensins: natural component of human innate immunity. Hum Immunol 74:1069–1079

    Article  CAS  PubMed  Google Scholar 

  • Jiang S, Deslouches B, Chen C, Di ME, Di YP, Vance R (2019) Antibacterial properties and efficacy of a novel SPLUNC1-derived antimicrobial peptide, 4-short, in a murine model of respiratory infection. mBio 10:e00226–e00219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordal S, Glambek M, Oppegaard O (2014) New Tricks from an old cow: infective endocarditis caused by Streptococcus dysgalactiae subsp. dysgalactiae. J Clin Microbiol 53:731–734

  • Kalmus P, Simojoki H, Orro T, Taponen S, Mustonen K, Holopainen J, Pyoeraelae S (2014) Efficacy of 5-day parenteral versus intramammary benzylpenicillin for treatment of clinical mastitis caused by gram-positive bacteria susceptible to penicillin in vitro. J Dairy Sci 97:2155–2164

  • Kang SJ, Park SJ, Mishig-Ochir T, Lee BJ (2014) Antimicrobial peptides: therapeutic potentials. Expert Rev Anti-Infect Ther 12:1477–1486

    Article  CAS  PubMed  Google Scholar 

  • Klein K, Grønnemose RB, Alm M, Brinch KS, Kolmos HJ, Andersen TE (2017) Controlled release of plectasin NZ2114 from a hybrid silicone-hydrogel material for inhibition of Staphylococcus aureus biofilm. Antimicrob Agents Chemother 61:e00604–e00617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koh TH, Sng LH, Yuen SM, Thomas CK, Tan PL, Tan SH, Wong NS (2009) Streptococcal cellulitis following preparation of fresh raw seafood. Zoonoses Public Health 56:206–208

    Article  CAS  PubMed  Google Scholar 

  • Krukowski H, Szymankiewicz M, Lisowski A (2008) Slime production by Staphylococcus aureus strains isolated from cases of bovine mastitis. Pol J Microbiol 57:253–255

    PubMed  Google Scholar 

  • Lazzaro BP, Zasloff M, Rolff J (2020) Antimicrobial peptides: application informed by evolution. Science 368:eaau5480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Wang L, Gao Y, Wang J, Zhao X (2017b) Effective antimicrobial activity of plectasin-derived antimicrobial peptides against Staphylococcus aureus infection in mammary glands. Front Microbiol 8:2386

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Z, Mao R, Teng D, Hao Y, Chen H, Wang X, Wang X, Yang N, Wang J (2017c) Antibacterial and immunomodulatory activities of insect defensins-DLP2 and DLP4 against multidrug-resistant Staphylococcus aureus. Sci Rep 7:12124

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Z, Wang X, Wang X, Teng D, Mao R, Hao Y, Wang J (2017d) Research advances on plectasin and its derivatives as new potential antimicrobial candidates. Process Biochem 56:62–70

    Article  CAS  Google Scholar 

  • Li B, Yang N, Shan Y, Wang X, Hao Y, Mao R, Teng D, Fan H, Wang J (2020) Therapeutic potential of a designed CSαβ peptide ID13 in Staphylococcus aureus-induced endometritis of mice. Appl Microbiol Biotechnol 104:6693–6705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Yang N, Mao R, Teng D, Wang J (2020) A new high-yielding antimicrobial peptide NZX and its antibacterial activity against Staphylococcus hyicus in vitro/vivo. Appl Microbiol Biotechnol 104:1555–1568

  • Lyu Y, Chen T, Shang L, Yang Y, Shan A (2019) Design of Trp-rich dodecapeptides with broad-spectrum antimicrobial potency and membrane-disruptive mechanism. J Med Chem 62:6941–6957

    Article  CAS  PubMed  Google Scholar 

  • Maekawa S, Wang PC, Chen SC (2019) Differential expression of immune-related genes in head kidney and spleen of cobia (Rachycentron canadum) having Streptococcus dysgalactiae infection. Fish Shellfish Immunol 92:842–850

    Article  CAS  PubMed  Google Scholar 

  • Melchior MB, Vaarkamp H, Fink-Gremmels J (2006) Biofilms: a role in recurrent mastitis infections. Vet J 171:398–407

    Article  CAS  PubMed  Google Scholar 

  • Mwangi J, Hao X, Lai R, Zhang Z-Y (2019) Antimicrobial peptides: new hope in the war against multidrug resistance. Zool Res 40:488–505

    Article  PubMed  PubMed Central  Google Scholar 

  • Narayana JL, Huang HN, Wu CJ, Chen JY (2015) Efficacy of the antimicrobial peptide TP4 against Helicobacter pylori infection: in vitro membrane perturbation via micellization and in vivo suppression of host immune responses in a mouse model. Oncotarget 6:12936–12954

  • Nett JE, Sanchez H, Cain MT, Ross KM, Andes DR (2011) Interface of Candida albicans biofilm matrix-associated drug resistance and cell wall integrity regulation. Eukaryot Cell 10:1660–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholas RAJ (2016) Mycoplasma biofilm enhances environmental persistence and virulence. In: 49th European Veterinary Conference

    Google Scholar 

  • Oliveira AS, Martinez-De-Oliveira J, Donders GGG, Palmeira-De-Oliveira R, Palmeira-De-Oliveira A (2018) Anti-Candida activity of antidepressants sertraline and fluoxetine: effect upon pre-formed biofilms. Med Microbiol Immunol 207:195–200

    Article  CAS  PubMed  Google Scholar 

  • Park MJ, Eun IS, Jung CY, Ko YC, Kim YJ, Kim CK, Kang EJ (2012) Streptococcus dysgalactiae subspecies dysgalactiae infection after total knee arthroplasty: a case report. Knee Surg Relat Res 24:120–123

    Article  PubMed  PubMed Central  Google Scholar 

  • Pen G, Yang N, Teng D, Mao R, Hao Y, Wang J (2020) A review on the use of antimicrobial peptides to combat porcine viruses. Antibiotics 9(11): 801

  • Quintieri L, Caputo L, Monaci L, Cavalluzzi MM, Denora N (2020) Lactoferrin-derived peptides as a control strategy against skinborne staphylococcal biofilms. Biomedicines 8:E323

    Article  PubMed  Google Scholar 

  • Schmelcher M, Powell AM, Camp MJ, Pohl CS, Donovan DM (2015) Synergistic streptococcal phage λSA2 and B30 endolysins kill streptococci in cow milk and in a mouse model of mastitis. Appl Microbiol Biotechnol 99:8475–8486

  • Schneider T, Kruse T, Wimmer R, Wiedemann I, Sass V, Pag U, Jansen A, Nielsen AK, Mygind PH, Raventós DS, Neve S, Ravn B, Bonvin AM, De Maria L, Andersen AS, Gammelgaard LK, Sahl HG, Kristensen HH (2010) Plectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid II. Science 328:1168–1172

    Article  CAS  PubMed  Google Scholar 

  • Seroussi E, Klompus S, Silanikove M, Krifucks O, Shapiro F, Gertler A, Leitner G (2013) Nonbactericidal secreted phospholipase A2s are potential anti-inflammatory factors in the mammary gland. Immunogenetics 65:861–871

    Article  CAS  PubMed  Google Scholar 

  • Shan Y, Yang N, Teng D, Wang X, Mao R, Hao Y, Ma X, Fan H, Wang J (2020) Recombinant of the staphylococcal bacteriophage lysin CHAP(k) and its elimination against Streptococcus agalactiae biofilms. Microorganisms 8:216

    Article  CAS  PubMed Central  Google Scholar 

  • Stogios PJ, Savchenko A (2020) Molecular mechanisms of vancomycin resistance. Protein Sci 29:654–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tenland E, Krishnan N, Rönnholm A, Kalsum S, Puthia M, Mörgelin M, Davoudi M, Otrocka M, Alaridah N, Glegola-Madejska I (2018) A novel derivative of the fungal antimicrobial peptide plectasin is active against Mycobacterium tuberculosis. Tuberculosis 113:231–238

    Article  CAS  PubMed  Google Scholar 

  • Thiruvengadam M, Venkidasamy B, Karuppasamy P, Muthusamy R, Nile SH, Subramanian U (2019) ‘Biofilm clippers’- enzyme formulation for bovine mastitic biofilm therapy. Microb Pathog 137:103740

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhang Y, Lee WH, Yang X, Zhang Y (2016) Novel peptides from skins of amphibians showed broad-spectrum antimicrobial activities. Chem Biol Drug Des 87:419–424

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wang X, Teng D, Mao R, Hao Y, Yang N, Li Z, Wang J (2018) Increased intracellular activity of MP1102 and NZ2114 against Staphylococcus aureus in vitro and in vivo. Sci Rep 8:4204

  • Wang X, Teng D, Wang X, Hao Y, Wang J (2019) Internalization, distribution, and activity of peptide H2 against the intracellular multidrug-resistant bovine mastitis-causing bacterium Staphylococcus aureus. Sci Rep 9:7968

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiegand I, Hilpert K, Hancock REW (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3:163–175

    Article  CAS  PubMed  Google Scholar 

  • Xi D, Wang XM, Teng D, Mao RY, Zhang Y, Wang XJ, Wang JH (2014) Mechanism of action of the tri-hybrid antimicrobial peptide LHP7 from lactoferricin, HP and plectasin on Staphylococcus aureus. BioMetals 27:957–968

    Article  CAS  PubMed  Google Scholar 

  • Yang N, Liu X, Teng D, Li Z, Wang X, Mao R, Wang X, Hao Y, Wang J (2017) Antibacterial and detoxifying activity of NZ17074 analogues with multi-layers of selective antimicrobial actions against Escherichia coli and Salmonella enteritidis. Sci Rep 7:3392

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang N, Teng D, Mao R, Hao Y, Wang X, Wang Z, Wang X, Wang J (2019) A recombinant fungal defensin-like peptide-P2 combats multidrug-resistant Staphylococcus aureus and biofilms. Appl Microbiol Biotechnol 103:5193–5213

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Fang JT, Sun J, Zheng M, Zhang Q, He JS, Liao XP, Liu YH (2017) Efficacy of cefquinome against Escherichia coli environmental mastitis assessed by pharmacokinetic and pharmacodynamic integration in lactating mouse model. Front Microbiol 8:1445

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Piepers S, Shan R, Cai L, Mao S, Zou J, Ali T, De Vliegher S, Han B (2018) Phenotypic and genotypic characterization of antimicrobial resistance profiles in Streptococcus dysgalactiae isolated from bovine clinical mastitis in 5 provinces of China. J Dairy Sci 101:3344–3355

    Article  CAS  PubMed  Google Scholar 

  • Zhao F, Yang N, Wang X, Mao R, Hao Y, Li Z, Wang X, Teng D, Fan H, Wang J (2019) In vitro/vivo mechanism of action of MP1102 with low/nonresistance against Streptococcus suis type 2 strain CVCC 3928. Front Cell Infect Microbiol 9:48

  • Zheng X, Wang X, Teng D, Mao R, Wang J (2017) Mode of action of plectasin-derived peptides against gas gangrene-associated Clostridium perfringens type A. PLoS One 12:e0185215

    Article  PubMed  PubMed Central  Google Scholar 

  • Zong L, Teng D, Wang X, Mao R, Yang N, Hao Y, Wang J (2016) Mechanism of action of a novel recombinant peptide, MP1102, against Clostridium perfringens type C. Appl Microbiol Biotechnol 100 (11): 5045–5057

Download references

Acknowledgments

We acknowledge Chunli Li and Tong Zhao from the Core Facility at the Institute of Microbiology at the Chinese Academy of Sciences (CAS) for their technical support with SEM, TEM, and flow cytometer analysis, and Dan Zhang from the Core Facility at the Center of Biomedical Analysis at Tsinghua University for her CLSM analysis.

Funding

This study was funded by the National Natural Science Fundation of China (31672456), the AMP & ATA direction of National Innovation Program of the Agricultural Science and Technology in CAAS (CAAS-ASTIP-2013-FRI-02) and Its Key Project of Alternatives to Antibiotics for Feed Usages (CAAS-ZDXT-2018008), and Tianjin Science and Technology Planning Project (18YFZCNC01130).

Author information

Authors and Affiliations

Authors

Contributions

QZ, NY, RM, DT, HF, and JW conceived and designed experiments. QZ carried out all the experiments. QZ, NY, DT, and JW contributed in writing. JW and HF contributed in funding acquisition. YH and XM contributed to materials and reagents. RM contributed in modifying figure.

Corresponding authors

Correspondence to Da Teng, Huan Fan or Jianhua Wang.

Ethics declarations

The animal protocol for this study was approved by the Animal Care and Use Committee of the Feed Research Institute, Chinese Academy of Agricultural Sciences (Beijing, China), and all applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

All the authors declare no conflicts of interest (financial or non-financial).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Yang, N., Mao, R. et al. A recombinant fungal defensin-like peptide-P2 combats Streptococcus dysgalactiae and biofilms. Appl Microbiol Biotechnol 105, 1489–1504 (2021). https://doi.org/10.1007/s00253-021-11135-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-021-11135-y

Keywords

Navigation