Skip to main content

Advertisement

Log in

Archaea, specific genetic traits, and development of improved bacterial live biotherapeutic products: another face of next-generation probiotics

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Trimethylamine (TMA) and its oxide TMAO are important biomolecules involved in disease-associated processes in humans (e.g., trimethylaminuria and cardiovascular diseases). TMAO in plasma (pTMAO) stems from intestinal TMA, which is formed from various components of the diet in a complex interplay between diet, gut microbiota, and the human host. Most approaches to prevent the occurrence of such deleterious molecules focus on actions to interfere with gut microbiota metabolism to limit the synthesis of TMA. Some human gut archaea however use TMA as terminal electron acceptor for producing methane, thus indicating that intestinal TMA does not accumulate in some human subjects. Therefore, a rational alternative approach is to eliminate neo-synthesized intestinal TMA. This can be achieved through bioremediation of TMA by these peculiar methanogenic archaea, either by stimulating or providing them, leading to a novel kind of next-generation probiotics referred to as archaebiotics. Finally, specific components which are involved in this archaeal metabolism could also be used as intestinal TMA sequesters, facilitating TMA excretion along with stool. Referring to a standard pharmacological approach, these TMA traps could be synthesized ex vivo and then delivered into the human gut. Another approach is the engineering of known probiotic strain in order to metabolize TMA, i.e., live engineered biotherapeutic products. These alternatives would require, however, to take into account the necessity of synthesizing the 22nd amino acid pyrrolysine, i.e., some specificities of the genetics of TMA-consuming archaea. Here, we present an overview of these different strategies and recent advances in the field that will sustain such biotechnological developments.

Key points

• Some autochthonous human archaea can use TMA for their essential metabolism, a methyl-dependent hydrogenotrophic methanogenesis.

• They could therefore be used as next-generation probiotics for preventing some human diseases, especially cardiovascular diseases and trimethylaminuria.

• Their genetic capacities can also be used to design live recombinant biotherapeutic products.

• Encoding of the 22nd amino acid pyrrolysine is necessary for such alternative developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Waiz M, Mikov M, Mitchell S, Smith R (1992) The exogenous origin of trimethylamine in the mouse. Metabol 41(2):135–136

    CAS  Google Scholar 

  • Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Dore J, Antolin M, Artiguenave F, Blottiere HM, Almeida M, Brechot C, Cara C, Chervaux C, Cultrone A, Delorme C, Denariaz G, Dervyn R, Foerstner KU, Friss C, van de Guchte M, Guedon E, Haimet F, Huber W, van Hylckama-Vlieg J, Jamet A, Juste C, Kaci G, Knol J, Lakhdari O, Layec S, Le Roux K, Maguin E, Merieux A, Melo Minardi R, M'Rini C, Muller J, Oozeer R, Parkhill J, Renault P, Rescigno M, Sanchez N, Sunagawa S, Torrejon A, Turner K, Vandemeulebrouck G, Varela E, Winogradsky Y, Zeller G, Weissenbach J, Ehrlich SD, Bork P (2011) Enterotypes of the human gut microbiome. Nature 473(7346):174–180. https://doi.org/10.1038/nature09944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkins JF, Gesteland R (2002) Biochemistry. The 22nd amino acid. Science (New York, NY) 296(5572):1409–1410. https://doi.org/10.1126/science.1073339

    Article  CAS  Google Scholar 

  • Bang C, Schmitz RA (2018) Archaea: forgotten players in the microbiome. Emerg Top Life Sci 2(4):459–468

    CAS  Google Scholar 

  • Bang C, Vierbuchen T, Gutsmann T, Heine H, Schmitz RA (2017) Immunogenic properties of the human gut-associated archaeon Methanomassiliicoccus luminyensis and its susceptibility to antimicrobial peptides. PLoS One 12(10):e0185919–e0185919. https://doi.org/10.1371/journal.pone.0185919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bang C, Weidenbach K, Gutsmann T, Heine H, Schmitz RA (2014) The intestinal archaea Methanosphaera stadtmanae and Methanobrevibacter smithii activate human dendritic cells. PLoS One 9(6):e99411

    PubMed  PubMed Central  Google Scholar 

  • Bennett BJ, de Aguiar Vallim TQ, Wang Z, Shih DM, Meng Y, Gregory J, Allayee H, Lee R, Graham M, Crooke R (2013) Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab 17(1):49–60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beránek V, Willis JCW, Chin JW (2019) An evolved Methanomethylophilus alvus pyrrolysyl-tRNA synthetase/tRNA pair is highly active and orthogonal in mammalian cells. Biochem 58(5):387–390. https://doi.org/10.1021/acs.biochem.8b00808

    Article  CAS  Google Scholar 

  • Borrel G, Harris HM, Parisot N, Gaci N, Tottey W, Mihajlovski A, Deane J, Gribaldo S, Bardot O, Peyretaillade E, Peyret P, O'Toole PW, Brugere JF (2013a) Genome sequence of “Candidatus Methanomassiliicoccus intestinalis” issoire-Mx1, a third Thermoplasmatales-related methanogenic archaeon from human feces. Genome Announc 1(4). https://doi.org/10.1128/genomeA.00453-13

  • Borrel G, Harris HM, Tottey W, Mihajlovski A, Parisot N, Peyretaillade E, Peyret P, Gribaldo S, O'Toole PW, Brugere JF (2012) Genome sequence of “Candidatus Methanomethylophilus alvus” Mx1201, a methanogenic archaeon from the human gut belonging to a seventh order of methanogens. J Bacteriol 194(24):6944–6945. https://doi.org/10.1128/JB.01867-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borrel G, McCann A, Deane J, Neto MC, Lynch DB, Brugere JF, O'Toole PW (2017) Genomics and metagenomics of trimethylamine-utilizing Archaea in the human gut microbiome. ISME J 11(9):2059–2074. https://doi.org/10.1038/ismej.2017.72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borrel G, O'Toole PW, Harris HM, Peyret P, Brugere JF, Gribaldo S (2013b) Phylogenomic data support a seventh order of methylotrophic methanogens and provide insights into the evolution of methanogenesis. Genome Biol Evol 5(10):1769–1780. https://doi.org/10.1093/gbe/evt128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borrel G, Parisot N, Harris HM, Peyretaillade E, Gaci N, Tottey W, Bardot O, Raymann K, Gribaldo S, Peyret P, O'Toole PW, Brugere JF (2014) Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine. BMC Genomics 15:679. https://doi.org/10.1186/1471-2164-15-679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brugère J-F, Atkins JF, O'Toole PW, Borrel G (2018) Pyrrolysine in archaea: a 22nd amino acid encoded through a genetic code expansion. Emerg Top Life Sci 2(4):607–618. https://doi.org/10.1042/etls20180094

    Article  CAS  Google Scholar 

  • Brugere JF, Borrel G, Gaci N, Tottey W, O'Toole PW, Malpuech-Brugere C (2014) Archaebiotics: proposed therapeutic use of archaea to prevent trimethylaminuria and cardiovascular disease. Gut Microbes 5(1):5–10. https://doi.org/10.4161/gmic.26749

    Article  PubMed  Google Scholar 

  • Cavicchioli R, Curmi PMG, Saunders N, Thomas T (2003) Pathogenic archaea: do they exist? Bioessays 25(11):1119–1128. https://doi.org/10.1002/bies.10354

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary PP, Conway PL, Schlundt J (2018) Methanogens in humans: potentially beneficial or harmful for health. Appl Microbiol Biotechnol 102(7):3095–3104. https://doi.org/10.1007/s00253-018-8871-2

    Article  CAS  PubMed  Google Scholar 

  • Chen Y-m, Liu Y, Zhou R-f, Chen X-l, Wang C, Tan X-y, Wang L-j, Zheng R-d, Zhang H-w, Ling W-h (2016) Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults. Sci Rep 6(1):1–9

    Google Scholar 

  • Cho CE, Caudill MA (2017) Trimethylamine-N-oxide: friend, foe, or simply caught in the cross-fire? Trends Endocrinol Metab 28(2):121–130

    CAS  PubMed  Google Scholar 

  • Christodoulou J (2012) Trimethylaminuria: an under-recognised and socially debilitating metabolic disorder. J Paediatr Child H 48(3):E153–E155

    Google Scholar 

  • Claesson MJ, Cusack S, O'Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, Marchesi JR, Falush D, Dinan T, Fitzgerald G, Stanton C, van Sinderen D, O'Connor M, Harnedy N, O'Connor K, Henry C, O'Mahony D, Fitzgerald AP, Shanahan F, Twomey C, Hill C, Ross RP, O'Toole PW (2011) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A 108(Suppl 1):4586–4591. https://doi.org/10.1073/pnas.1000097107

    Article  PubMed  Google Scholar 

  • Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM, Cusack S, Harris HM, Coakley M, Lakshminarayanan B, O'Sullivan O, Fitzgerald GF, Deane J, O'Connor M, Harnedy N, O'Connor K, O'Mahony D, van Sinderen D, Wallace M, Brennan L, Stanton C, Marchesi JR, Fitzgerald AP, Shanahan F, Hill C, Ross RP, O'Toole PW (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488(7410):178–184. https://doi.org/10.1038/nature11319

    Article  CAS  PubMed  Google Scholar 

  • Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG (2014) Minireview: gut microbiota: the neglected endocrine organ. Mol Endocrinol 28(8):1221–1238

    PubMed  PubMed Central  Google Scholar 

  • Costa KC, Leigh JA (2014) Metabolic versatility in methanogens. Curr Opin Biotechnol 29:70–75

    CAS  PubMed  Google Scholar 

  • Craciun S, Balskus EP (2012) Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proc Natl Acad Sci U S A 109(52):21307–21312. https://doi.org/10.1073/pnas.1215689109

    Article  PubMed  PubMed Central  Google Scholar 

  • Din AU, Hassan A, Zhu Y, Yin T, Gregersen H, Wang G (2019) Amelioration of TMAO through probiotics and its potential role in atherosclerosis. Appl Microbiol Biotechnol 103(23–24):9217–9228. https://doi.org/10.1007/s00253-019-10142-4

    Article  CAS  PubMed  Google Scholar 

  • Dolphin CT, Janmohamed A, Smith RL, Shephard EA (1997) Missense mutation in flavin-containing mono-oxygenase 3 gene, FMO3, underlies fish-odour syndrome. Nat Genet 17(4):491–494

    CAS  PubMed  Google Scholar 

  • Donaldson GP, Lee SM, Mazmanian SK (2016) Gut biogeography of the bacterial microbiota. Nat Rev Microbiol 14(1):20–32

    CAS  PubMed  Google Scholar 

  • Dridi B, Fardeau ML, Ollivier B, Raoult D, Drancourt M (2012) Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol 62(Pt 8):1902–1907. https://doi.org/10.1099/ijs.0.033712-0

    Article  CAS  PubMed  Google Scholar 

  • Dumas M-E, Rothwell AR, Hoyles L, Aranias T, Chilloux J, Calderari S, Noll EM, Péan N, Boulangé CL, Blancher C (2017) Microbial-host co-metabolites are prodromal markers predicting phenotypic heterogeneity in behavior, obesity, and impaired glucose tolerance. Cell Rep 20(1):136–148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferry JG (2010) The chemical biology of methanogenesis. Planet Sp Sci 58(14–15):1775–1783

    CAS  Google Scholar 

  • Gaci N, Borrel G, Tottey W, O'Toole PW, Brugere JF (2014) Archaea and the human gut: new beginning of an old story. World J Gastroenterol 20(43):16062–16078. https://doi.org/10.3748/wjg.v20.i43.16062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia J-L, Patel BK, Ollivier B (2000) Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe 6(4):205–226

    CAS  PubMed  Google Scholar 

  • Gessner A, König J, Fromm MF (2018) Contribution of multidrug and toxin extrusion protein 1 (MATE1) to renal secretion of trimethylamine-N-oxide (TMAO). Sci Rep 8(1):1–10

    CAS  Google Scholar 

  • Ghaly AE, Dave D, Budge S, Brooks M (2010) Fish spoilage mechanisms and preservation techniques. Am J Appl Sci 7(7):859

    CAS  Google Scholar 

  • Hao B, Gong W, Ferguson TK, James CM, Krzycki JA, Chan MK (2002) A new UAG-encoded residue in the structure of a methanogen methyltransferase. Science 296(5572):1462–1466. https://doi.org/10.1126/science.1069556

    Article  CAS  PubMed  Google Scholar 

  • Horz HP, Robertz N, Vianna ME, Henne K, Conrads G (2015) Relationship between methanogenic archaea and subgingival microbial complexes in human periodontitis. Anaerobe 35(Pt A):10–12. https://doi.org/10.1016/j.anaerobe.2015.02.008

    Article  CAS  PubMed  Google Scholar 

  • Hoyles L, Jiménez-Pranteda ML, Chilloux J, Brial F, Myridakis A, Aranias T, Magnan C, Gibson GR, Sanderson JD, Nicholson JK (2018) Metabolic retroconversion of trimethylamine N-oxide and the gut microbiota. Microbiome 6(1):73

    PubMed  PubMed Central  Google Scholar 

  • Human Microbiome Project C (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207–214. https://doi.org/10.1038/nature11234

    Article  CAS  Google Scholar 

  • Humbert J, Hammond K, Hathaway W, Marcoux J, O'Brien D (1970) Trimethylaminuria: the fish-odour syndrome. Lancet 296(7676):770–771

    Google Scholar 

  • Iino T, Tamaki H, Tamazawa S, Ueno Y, Ohkuma M, Suzuki K, Igarashi Y, Haruta S (2013) Candidatus Methanogranum caenicola: a novel methanogen from the anaerobic digested sludge, and proposal of Methanomassiliicoccaceae fam. nov. and Methanomassiliicoccales ord. nov., for a methanogenic lineage of the class Thermoplasmata. Microbes Environ 28(2):244–250

    PubMed  PubMed Central  Google Scholar 

  • Isabella VM, Ha BN, Castillo MJ, Lubkowicz DJ, Rowe SE, Millet YA, Anderson CL, Li N, Fisher AB, West KA, Reeder PJ, Momin MM, Bergeron CG, Guilmain SE, Miller PF, Kurtz CB, Falb D (2018) Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat Biotechnol 36(9):857–864. https://doi.org/10.1038/nbt.4222

    Article  CAS  PubMed  Google Scholar 

  • Jameson E, Doxey AC, Airs R, Purdy KJ, Murrell JC, Chen Y (2016) Metagenomic data-mining reveals contrasting microbial populations responsible for trimethylamine formation in human gut and marine ecosystems. Microb Genom 2(9)

  • Jaworska K, Bielinska K, Gawrys-Kopczynska M, Ufnal M (2019) TMA (trimethylamine), but not its oxide TMAO (trimethylamine-oxide), exerts haemodynamic effects: implications for interpretation of cardiovascular actions of gut microbiome. Cardiovasc Res 115(14):1948–1949

    PubMed  Google Scholar 

  • Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L (2013) Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19(5):576

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koskinen K, Pausan MR, Perras AK, Beck M, Bang C, Mora M, Schilhabel A, Schmitz R, Moissl-Eichinger C (2017) First insights into the diverse human Archaeome: specific detection of archaea in the gastrointestinal tract, lung, and nose and on skin. mBio 8(6):e00824–e00817. https://doi.org/10.1128/mBio.00824-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroninger L, Berger S, Welte C, Deppenmeier U (2016) Evidence for the involvement of two heterodisulfide reductases in the energy-conserving system of Methanomassiliicoccus luminyensis. FEBS J 283(3):472–483. https://doi.org/10.1111/febs.13594

    Article  CAS  PubMed  Google Scholar 

  • Kröninger L, Steiniger F, Berger S, Kraus S, Welte CU, Deppenmeier U (2019) Energy conservation in the gut microbe Methanomassiliicoccus luminyensis is based on membrane-bound ferredoxin oxidation coupled to heterodisulfide reduction. FEBS J 286(19):3831–3843

    PubMed  Google Scholar 

  • Krzycki JA (2004) Function of genetically encoded pyrrolysine in corrinoid-dependent methylamine methyltransferases. Curr Opin Chem Biol 8(5):484–491. https://doi.org/10.1016/j.cbpa.2004.08.012

    Article  CAS  PubMed  Google Scholar 

  • Krzycki JA (2005) The direct genetic encoding of pyrrolysine. Curr Opin Microbiol 8(6):706–712

    CAS  PubMed  Google Scholar 

  • Kurtz C, Denney WS, Blankstein L, Guilmain SE, Machinani S, Kotula J, Saha S, Miller P, Brennan AM (2018) Translational development of microbiome-based therapeutics: kinetics of E. coli Nissle and engineered strains in humans and nonhuman primates. Clin Transl Sci 11(2):200–207. https://doi.org/10.1111/cts.12528

    Article  CAS  PubMed  Google Scholar 

  • Lang K, Schuldes J, Klingl A, Poehlein A, Daniel R, Brune A (2015) New mode of energy metabolism in the seventh order of methanogens as revealed by comparative genome analysis of “Candidatus Methanoplasma termitum”. Appl Environ Microbiol 81(4):1338–1352

    PubMed  PubMed Central  Google Scholar 

  • Lepp PW, Brinig MM, Ouverney CC, Palm K, Armitage GC, Relman DA (2004) Methanogenic Archaea and human periodontal disease. Proc Natl Acad Sci U S A 101(16):6176–6181. https://doi.org/10.1073/pnas.0308766101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longstaff DG, Larue RC, Faust JE, Mahapatra A, Zhang L, Green-Church KB, Krzycki JA (2007) A natural genetic code expansion cassette enables transmissible biosynthesis and genetic encoding of pyrrolysine. Proc Natl Acad Sci U S A 104(3):1021–1026. https://doi.org/10.1073/pnas.0610294104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyu Z, Shao N, Akinyemi T, Whitman WB (2018) Methanogenesis. Curr Biol 28(13):R727–R732

    CAS  PubMed  Google Scholar 

  • Mackay RJ, McEntyre CJ, Henderson C, Lever M, George PM (2011) Trimethylaminuria: causes and diagnosis of a socially distressing condition. Clin Biochem Rev 32(1):33

    PubMed  PubMed Central  Google Scholar 

  • Martinez-del Campo A, Bodea S, Hamer HA, Marks JA, Haiser HJ, Turnbaugh PJ, Balskus EP (2015) Characterization and detection of a widely distributed gene cluster that predicts anaerobic choline utilization by human gut bacteria. mBio 6(2). https://doi.org/10.1128/mBio.00042-15

  • Messenger J, Clark S, Massick S, Bechtel M (2013) A review of trimethylaminuria:(fish odor syndrome). J Clin Aesthet Dermatol 6(11):45

    PubMed  PubMed Central  Google Scholar 

  • Mihajlovski A, Alric M, Brugere JF (2008) A putative new order of methanogenic Archaea inhabiting the human gut, as revealed by molecular analyses of the mcrA gene. Res Microbiol 159(7–8):516–521. https://doi.org/10.1016/j.resmic.2008.06.007

    Article  CAS  PubMed  Google Scholar 

  • Mihajlovski A, Dore J, Levenez F, Alric M, Brugere JF (2010) Molecular evaluation of the human gut methanogenic archaeal microbiota reveals an age-associated increase of the diversity. Environ Microbiol Rep 2(2):272–280. https://doi.org/10.1111/j.1758-2229.2009.00116.x

    Article  CAS  PubMed  Google Scholar 

  • Miller TL, Wolin M, de Macario EC, Macario A (1982) Isolation of Methanobrevibacter smithii from human feces. Appl Environ Microbiol 43(1):227–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moissl-Eichinger C, Pausan M, Taffner J, Berg G, Bang C, Schmitz RA (2018) Archaea are interactive components of complex microbiomes. Trends Microbiol 26(1):70–85

    CAS  PubMed  Google Scholar 

  • Mondul AM, Moore SC, Weinstein SJ, Karoly ED, Sampson JN, Albanes D (2015) Metabolomic analysis of prostate cancer risk in a prospective cohort: the alpha-tocopherol, beta-carotene cancer prevention (ATBC) study. Int J Cancer 137(9):2124–2132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Namy O, Zhou Y, Gundllapalli S, Polycarpo CR, Denise A, Rousset J-P, Söll D, Ambrogelly A (2007) Adding pyrrolysine to the Escherichia coli genetic code. FEBS Lett 581(27):5282–5288. https://doi.org/10.1016/j.febslet.2007.10.022

    Article  CAS  PubMed  Google Scholar 

  • O'Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7(7):688–693. https://doi.org/10.1038/sj.embor.7400731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul K, Nonoh JO, Mikulski L, Brune A (2012) “Methanoplasmatales,” Thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of methanogens. Appl Environ Microbiol 78(23):8245–8253. https://doi.org/10.1128/AEM.02193-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pausan MR, Csorba C, Singer G, Till H, Schöpf V, Santigli E, Klug B, Högenauer C, Blohs M, Moissl-Eichinger C (2019) Exploring the archaeome: detection of archaeal signatures in the human body. Front Microbiol 10:2796–2796. https://doi.org/10.3389/fmicb.2019.02796

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rak K, Rader DJ (2011) The diet–microbe morbid union. Nature 472(7341):40–41

    CAS  PubMed  Google Scholar 

  • Ramezani A, Nolin TD, Barrows IR, Serrano MG, Buck GA, Regunathan-Shenk R, West RE 3rd, Latham PS, Amdur R, Raj DS (2018) Gut colonization with methanogenic archaea lowers plasma trimethylamine N-oxide concentrations in apolipoprotein E−/− mice. Sci Rep 8(1):14752–14752. https://doi.org/10.1038/s41598-018-33018-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rath S, Rud T, Pieper DH, Vital M (2020) Potential TMA-producing bacteria are ubiquitously found in mammalia. Front Microbiol 10:2966

    PubMed  PubMed Central  Google Scholar 

  • Roberts AB, Gu X, Buffa JA, Hurd AG, Wang Z, Zhu W, Gupta N, Skye SM, Cody DB, Levison BS (2018) Development of a gut microbe–targeted nonlethal therapeutic to inhibit thrombosis potential. Nat Med 24(9):1407–1417

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14(8):e1002533. https://doi.org/10.1371/journal.pbio.1002533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan Z, Sun T, Huang H, Chen S, Chen L, Luo C, Yang W, Yang X, Yao P, Cheng J (2017) Association between microbiota-dependent metabolite trimethylamine-N-oxide and type 2 diabetes. Am J Clin Nutr 106(3):888–894

    CAS  PubMed  Google Scholar 

  • Simon J-C, Marchesi JR, Mougel C, Selosse M-A (2019) Host-microbiota interactions: from holobiont theory to analysis. Microbiome 7(1):1–5

    Google Scholar 

  • Soellinger A, Schwab C, Weinmaier T, Loy A, Tveit AT, Schleper C, Urich T (2016) Phylogenetic and genomic analysis of Methanomassiliicoccales in wetlands and animal intestinal tracts reveals clade-specific habitat preferences. FEMS Microbiol Ecol 92(1):fiv149

    Google Scholar 

  • Sogodogo E, Drancourt M, Grine G (2019) Methanogens as emerging pathogens in anaerobic abscesses. Eur J Clin Microbiol Infect Dis 38(5):811–818. https://doi.org/10.1007/s10096-019-03510-5

    Article  CAS  PubMed  Google Scholar 

  • Sollinger A, Schwab C, Weinmaier T, Loy A, Tveit AT, Schleper C, Urich T (2016) Phylogenetic and genomic analysis of Methanomassiliicoccales in wetlands and animal intestinal tracts reveals clade-specific habitat preferences. FEMS Microbiol Ecol 92(1). https://doi.org/10.1093/femsec/fiv149

  • Srinivasan G, James CM, Krzycki JA (2002) Pyrrolysine encoded by UAG in Archaea: charging of a UAG-decoding specialized tRNA. Science 296(5572):1459–1462

    CAS  PubMed  Google Scholar 

  • Tang WH, Wang Z, Kennedy DJ, Wu Y, Buffa JA, Agatisa-Boyle B, Li XS, Levison BS, Hazen SL (2015) Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res 116(3):448–455. https://doi.org/10.1161/CIRCRESAHA.116.305360

    Article  CAS  PubMed  Google Scholar 

  • Tang WW, Hazen SL (2017) Microbiome, trimethylamine N-oxide, and cardiometabolic disease. Transl Res 179:108–115

    CAS  PubMed  Google Scholar 

  • Tang WW, Wang Z, Li XS, Fan Y, Li DS, Wu Y, Hazen SL (2017) Increased trimethylamine N-oxide portends high mortality risk independent of glycemic control in patients with type 2 diabetes mellitus. Clin Chem 63(1):297–306

    CAS  PubMed  Google Scholar 

  • Tharp JM, Ehnbom A, Liu WR (2018) tRNA(Pyl): structure, function, and applications. RNA Biol 15(4–5):441–452. https://doi.org/10.1080/15476286.2017.1356561

    Article  PubMed  Google Scholar 

  • Thauer RK, Kaster A-K, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6(8):579–591

    CAS  PubMed  Google Scholar 

  • Ueland PM (2011) Choline and betaine in health and disease. J Inherit Metab Dis 34(1):3–15

    CAS  PubMed  Google Scholar 

  • Vierbuchen T, Bang C, Rosigkeit H, Schmitz RA, Heine H (2017) The human-associated archaeon Methanosphaera stadtmanae is recognized through its RNA and induces TLR8-dependent NLRP3 inflammasome activation. Front Immunol 8:1535–1535. https://doi.org/10.3389/fimmu.2017.01535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, Wu Y, Schauer P, Smith JD, Allayee H, Tang WH, DiDonato JA, Lusis AJ, Hazen SL (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472(7341):57–63. https://doi.org/10.1038/nature09922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, Gu X, Huang Y, Zamanian-Daryoush M, Culley MK (2015) Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163(7):1585–1595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Warrier M, Shih DM, Burrows AC, Ferguson D, Gromovsky AD, Brown AL, Marshall S, McDaniel A, Schugar RC, Wang Z (2015) The TMAO-generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance. Cell Rep 10(3):326–338

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willis JCW, Chin JW (2018) Mutually orthogonal pyrrolysyl-tRNA synthetase/tRNA pairs. Nat Chem 10(8):831–837. https://doi.org/10.1038/s41557-018-0052-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu R, Wang Q, Li L (2015) A genome-wide systems analysis reveals strong link between colorectal cancer and trimethylamine N-oxide (TMAO), a gut microbial metabolite of dietary meat and fat. BMC Genomics 16(S7):S4

    PubMed  PubMed Central  Google Scholar 

  • Zeisel SH (1990) Choline deficiency. J Nutr Biochem 1(7):332–349

    CAS  PubMed  Google Scholar 

  • Zeisel SH, Warrier M (2017) Trimethylamine N-oxide, the microbiome, and heart and kidney disease. Annu Rev Nutr 37:157–181

    CAS  PubMed  Google Scholar 

  • Zhang Y, Baranov PV, Atkins JF, Gladyshev VN (2005) Pyrrolysine and selenocysteine use dissimilar decoding strategies. J Biol Chem 280(21):20740–20751. https://doi.org/10.1074/jbc.M501458200

    Article  CAS  PubMed  Google Scholar 

  • Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, Mujagic Z, Vila AV, Falony G, Vieira-Silva S (2016) Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352(6285):565–569

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu W, Buffa J, Wang Z, Warrier M, Schugar R, Shih D, Gupta N, Gregory J, Org E, Fu X (2018) Flavin monooxygenase 3, the host hepatic enzyme in the metaorganismal trimethylamine N-oxide-generating pathway, modulates platelet responsiveness and thrombosis risk. J Thromb Haemost 16(9):1857–1872

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, Li L, Fu X, Wu Y, Mehrabian M (2016) Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165(1):111–124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Jameson E, Crosatti M, Schafer H, Rajakumar K, Bugg TD, Chen Y (2014) Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota. Proc Natl Acad Sci U S A 111(11):4268–4273. https://doi.org/10.1073/pnas.1316569111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

JFB is supported by a grant from the Agence Nationale de la Recherche of the French government through the program “Investissements d’Avenir” (16-IDEX-0001 CAP 20–25), through an “Innovation-Research” grant from Hub Innovergne. Work in PWOT’s lab is supported by an award from Science Foundation Ireland to APC Microbiome Ireland.

Author information

Authors and Affiliations

Authors

Contributions

JFB and PWOT are inventors on patent WO2014082773A1 co-owned by their respective universities. PWOT is a founder of 4D Pharma Cork Ltd., a role that has not constrained or influenced this review. All the authors contributed to the written of the manuscript and the conception and design of figures. All the authors read and approved the manuscript.

Corresponding author

Correspondence to Jean-François Brugère.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadhlaoui, K., Arnal, ME., Martineau, M. et al. Archaea, specific genetic traits, and development of improved bacterial live biotherapeutic products: another face of next-generation probiotics. Appl Microbiol Biotechnol 104, 4705–4716 (2020). https://doi.org/10.1007/s00253-020-10599-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10599-8

Keywords

Navigation