Skip to main content

Advertisement

Log in

Plant growth promotion by Pseudomonas putida KT2440 under saline stress: role of eptA

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

New strategies to improve crop yield include the incorporation of plant growth-promoting bacteria in agricultural practices. The non-pathogenic bacterium Pseudomonas putida KT2440 is an excellent root colonizer of crops of agronomical importance and has been shown to activate the induced systemic resistance of plants in response to certain foliar pathogens. In this work, we have analyzed additional plant growth promotion features of this strain. We show it can tolerate high NaCl concentrations and determine how salinity influences traits such as the production of indole compounds, siderophore synthesis, and phosphate solubilization. Inoculation with P. putida KT2440 significantly improved seed germination and root and stem length of soybean and corn plants under saline conditions compared to uninoculated plants, whereas the effects were minor under non-saline conditions. Also, random transposon mutagenesis was used for preliminary identification of KT2440 genes involved in bacterial tolerance to saline stress. One of the obtained mutants was analyzed in detail. The disrupted gene encodes a predicted phosphoethanolamine-lipid A transferase (EptA), an enzyme described to be involved in the modification of lipid A during lipopolysaccharide (LPS) biosynthesis. This mutant showed changes in exopolysaccharide (EPS) production, low salinity tolerance, and reduced competitive fitness in the rhizosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20

    Google Scholar 

  • Anandan A, Evans GL, Condic-Jurkic K, O’Mara ML, John CM, Phillips NJ, Jarvis GA, Wills SS, Stubbs KA, Moraes I, Kahler CM, Vrielink A (2017) Structure of a lipid A phosphoethanolamine transferase suggests how conformational changes govern substrate binding. Proc Natl Acad Sci 114(9):2218–2223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Chang WS, Van De Mortel M, Nielsen L, De Guzman GN, Li X, Halverson LJ (2007) Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. J Bacteriol 189(22):8290–8299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaundhary T, Shukla P (2019) Bioinoculants for bioremediation applications and disease resistance: innovative perspectives. Indian J Microbiol 59(2):129–136

    Google Scholar 

  • Chen C, Beattie GA (2007) Characterization of the osmoprotectant transporter OpuC from Pseudomonas syringae and demonstration that cystathionine-B-synthase domains are required for its osmoregulatory function. J Bacteriol 189(19):6901–6912

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Lee SM, Mao Y (2004) Protective effect of exopolysaccharide colanic acid of Escherichia coli O157:H7 to osmotic and oxidative stress. Int J Food Microbiol 93:281–286

    CAS  PubMed  Google Scholar 

  • Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53:912–918

    CAS  PubMed  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42(5):669–678

    CAS  Google Scholar 

  • Cox AD, Wright JC, Li J, Hood DW, Moxon ER, Richards JC (2003) Phosphorylation of the lipid A region of meningococcal lipopolysaccharide: identification of a family of transferases that add phosphoethanolamine to lipopolysaccharide. J Bacteriol 185(11):3270–3277

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Lorenzo V, Herrero M, Jakubzik U, Timmis KN (1990) Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol 172(11):6568–6572

    PubMed  PubMed Central  Google Scholar 

  • Espinosa-Urgel M, Salido A, Ramos JL (2000) Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. J Bacteriol 182(9):2363–2369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Espinosa-Urgel M, Kolter R, Ramos JL (2002) Root colonization by Pseudomonas putida: love at first sight. Microbiology 148:341–344

    CAS  PubMed  Google Scholar 

  • Fernández-Piñar R, Espinosa-Urgel M, Dubern JF, Heeb S, Ramos JL, Cámara M (2012) Fatty acid-mediated signalling between two Pseudomonas species. Environ Microbiol Rep 4:417–423

    PubMed  Google Scholar 

  • Friedman L, Kolter R (2004) Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J Bacteriol 186(14):4457–4465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    CAS  PubMed  Google Scholar 

  • Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61(2):793–796

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goswami D, Janki N, Pinakin C (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2:1127500

    Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    CAS  PubMed  Google Scholar 

  • Hamamoto S, Horie T, Hauser F, Deinlein U, Schroeder JI, Uozumi N (2015) HKT transporters mediate salt stress resistance in plants: from structure and function to the field. Curr Opin Biotechnol 32:113–120

    CAS  PubMed  Google Scholar 

  • Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320

    PubMed  PubMed Central  Google Scholar 

  • Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem 42:1825–1831

    CAS  Google Scholar 

  • Huang TP, Somers EB, Wong ACL (2006) Differential biofilm formation and motility associated with lipopolysaccharide/exopolysaccharide-coupled biosynthetic genes in Stenotrophomonas maltophilia. J Bacteriol 188(8):3116–3120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hurek T, Reinhold-Hurek B, Van Montagu M, Kellenberger E (1994) Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J Bacteriol 176(7):1913–1923

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang H, Dong H, Yu B, Liu X, Li Y, Ji S, Zhang CL (2007) Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau. Environ Microbiol 9(10):2603–2621

    CAS  PubMed  Google Scholar 

  • Kan G, Zhang W, Yang W, Ma D, Zhang D, Hao D, Hu Z, Yu D (2015) Association mapping of soybean seed germination under salt stress. Mol Gen Genomics 290:2147–2162

    CAS  Google Scholar 

  • Kang SM, Khan AL, Waqas M, You YH, Kim JH, Kim J-G, Hamayun M, Lee IJ (2014) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interact 9(1):673–682

    Google Scholar 

  • Kao CC, Sequiera L (1991) A gene cluster required for coordinated biosynthesis of lipopolysaccharide and extracellular polysaccharide also affects virulence of Pseudomonas solanacearum. J Bacteriol 173(24):7841–7847

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kingsley MT, Gabriel DW, Marlow GC, Roberts PD (1993) The opsX locus of Xanthomonas campestris affects host range and biosynthesis of lipopolysaccharide and extracellular polysaccharide. J Bacteriol 175(18):5839–5850

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kloepper JW, Schroth M (1978) Plant growth promoting rhizobacteria on radishes. Proc 4th Int Conf Plant Pathog Bact 2:879–882

  • Lee Y, Oh S, Park W (2009) Inactivation of the Pseudomonas putida KT2440 dsbA gene promotes extracellular matrix production and biofilm formation. FEMS Microbiol Lett 297:38–48

    CAS  PubMed  Google Scholar 

  • Lerner A, Castro-Sowinski S, Valverde A, Lerner H, Dror R, Okon Y, Burdman S (2009a) The Azospirillum brasilense Sp7 noeJ and noeL genes are involved in extracellular polysaccharide biosynthesis. Microbiology 155:4058–4068

    CAS  PubMed  Google Scholar 

  • Lerner A, Okon Y, Burdman S (2009b) The wzm gene located on the pRhico plasmid of Azospirillum brasilense Sp7 is involved in lipopolysaccharide synthesis. Microbiology 155:791–804

    CAS  PubMed  Google Scholar 

  • Liebens V, Defraine V, Fauvart M (2016) A whole-cell-based high-throughput screening method to identify molecules targeting Pseudomonas aeruginosa persister cells. Methods Mol Biol 1333:113–120

    CAS  PubMed  Google Scholar 

  • Lloret J, Bolaños L, Lucas MM, Peart JM, Brewin NJ, Bonilla I, Rivilla R (1995) Ionic stress and osmotic pressure induce different alterations in the lipopolysaccharide of a Rhizobium meliloti strain. Appl Environ Microbiol 61(10):3701–3704

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch JM, de Leij F (2012) Rhizosphere. eLS

  • Mao Y, Doyle MP, Chen J (2001) Insertion mutagenesis of wca reduces acid and heat tolerance of Enterohemorrhagic Escherichia coli O157: H7. J Bacteriol 183(12):3811–3815

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Gil M, Yousef-Coronado F, Espinosa-Urgel M (2010) LapF, the second largest Pseudomonas putida protein, contributes to plant root colonization and determines biofilm architecture. Mol Microbiol 77(3):549–561

    PubMed  Google Scholar 

  • Martínez-Gil M, Quesada JM, Ramos-González MI, Soriano MI, de Cristóbal RE, Espinosa-Urgel M (2013) Interplay between extracellular matrix components of Pseudomonas putida biofilms. Res Microbiol 164:382–389

    PubMed  Google Scholar 

  • Matilla MA, Ramos JL, Bakker PAHM, Doornbos R, Badri DV, Vivanco JM, Ramos-González MI (2009) Pseudomonas putida KT2440 causes induced systemic resistance and changes in Arabidopsis root exudation. Environ Microbiol Rep 2(3):381–388

    PubMed  Google Scholar 

  • Matilla MA, Travieso ML, Ramos JL, Ramos-González MI (2011) Cyclic diguanylate turnover mediated by the sole GGDEF/EAL response regulator in Pseudomonas putida: its role in the rhizosphere and an analysis of its target processes. Environ Microbiol 13(7):1745–1766

    CAS  PubMed  Google Scholar 

  • McWilliams R, Chapman M, Kowalczuk KM, Hersberger D, Sun J, Kao CC (1995) Complementation and analysis of Pseudomonas solanacearum extracellular polysaccharide mutants and identification of genes responsive of EpsR. Mol Plant-Microbe Interact 8(6):837–844

    CAS  PubMed  Google Scholar 

  • Molina-Romero D, Baez A, Quinteros-Hernández V, Castañeda-Lucio M, Fuentes-Ramírez LE, Bustillos-Cristales MR, Rodríguez-Andrade O, Morales-García YE, Munive A, Muñoz-Rojas J (2017a) Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth. PLoS One 12(11):e0187913

    PubMed  PubMed Central  Google Scholar 

  • Molina-Romero D, Morales-García YE, Hernández-Tenorio AL, Castañeda-Lucio M, Netzahuatl-Muñoz AR, Muñoz-Rojas J (2017b) Pseudomonas putida estimula el crecimiento de maíz en función de la temperatura. Rev Iberoam Cienc 4:80–88

    Google Scholar 

  • Nakazawa T (2002) Travels of a Pseudomonas, from Japan around the world. Environ Microbiol 4(12):782–786

    CAS  PubMed  Google Scholar 

  • Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270

    CAS  PubMed  Google Scholar 

  • Neal AL, Ton J (2013) Systemic defense priming by Pseudomonas putida KT2440 in maize depends on benzoxazinoid exudation from the roots. Plant Signal Behav 8(1):e22655

    PubMed  Google Scholar 

  • Nezarat S, Gholami A (2009) Screening plant growth promoting rhizobacteria for improving seed germination, seedling growth and yield of maize. Pak J Biol Sci 12:26–32

    CAS  PubMed  Google Scholar 

  • Nielsen L, Li X, Halverson LJ (2011) Cell-cell and cell-surface interactions mediated by cellulose and a novel exopolysaccharide contribute to Pseudomonas putida biofilm formation and fitness under water-limiting conditions. Environ Microbiol 13(5):1342–1356

    CAS  PubMed  Google Scholar 

  • Nilsson M, Chiang WC, Fazli M, Gjermansen M, Givskov M, Tolker-Nielsen T (2011) Influence of putative exopolysaccharide genes on Pseudomonas putida KT2440 biofilm stability. Environ Microbiol 13(5):1357–1369

    CAS  PubMed  Google Scholar 

  • O’Toole GA, Kolter R (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways: a genetic analysis. Mol Microbiol 28(3):449–461

    PubMed  Google Scholar 

  • Patil AD (2015) Alleviating salt stress in crop plants through salt tolerant microbes. Int J Sci Res 4(1):1297–1302

    Google Scholar 

  • Pattanaik B, Schumann R, Karstein U (2007) Effects of ultraviolet radiation on cyanobacteria and their protective mechanisms. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 31–48

    Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68(8):3795–3801

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paul D, Lade H (2014) Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev 34:737–752

    Google Scholar 

  • Petrocelli S, Tondo ML, Daurelio LD, Orellano EG (2012) Modifications of Xanthomonas axonopodis pv. citri lipopolysaccharide affect the basal response and the virulence process during citrus canker. PLoS One 7(7):e40051

    CAS  PubMed  PubMed Central  Google Scholar 

  • Planchamp C, Glauser G, Mauch-Mani B (2015) Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants. Front Plant Sci 5:1

    Google Scholar 

  • Poole K (2002) Outer membranes and efflux: the path to multidrug resistance in gram-negative bacteria. Curr Pharm Biotechnol 3(2):77–98

    CAS  PubMed  Google Scholar 

  • Regenhardt D, Heuer H, Heim S, Fernandez DU, Strömpl C, Moore ERB, Timmis KN (2002) Pedigree and taxonomic credentials of Pseudomonas putida strain KT2440. Environ Microbiol 4(12):912–915

    CAS  PubMed  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    CAS  Google Scholar 

  • Roberson EB, Firestone MK (1992) Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Appl Environ Microbiol 58(4):1284–1291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Herva JJ, Reniero D, Galli E, Ramos JL (1999) Cell envelope mutants of Pseudomonas putida: physiological characterization and analysis of their ability to survive in soil. Environ Microbiol 1(6):479–488

    CAS  PubMed  Google Scholar 

  • Romic D, Ondrasek G, Romic M, Josip B, Vranjes M, Petosic D (2008) Salinity and irrigation method affect crop yield and soil quality in watermelon (Citrullus lanatus L.) growing. Irrig Drain 57:463–469

    Google Scholar 

  • Saghafi D, Delangiz N, Lajayer BA, Ghorbanpour M (2019) An overview on improvement of crop productivity in saline soils by halotolerant and halophilic PGPRs. J Biotechnol 9:261

    Google Scholar 

  • Salazar J, Alarcón M, Huerta J, Navarro B, Aguayo D (2017) Phosphoethanolamine addition to the heptose I of the lipopolysaccharide modifies the inner core structure and has an impact on the binding of polymyxin B to the Escherichia coli outer membrane. Arch Biochem Biophys 620:28–34

    CAS  PubMed  Google Scholar 

  • Sandhya V, Ali SZK (2015) The production of exopolysaccharide by Pseudomonas putida GAP-P45 under various abiotic stress conditions and its role in soil aggregation. Microbiology 84(4):512–519

    CAS  Google Scholar 

  • Sandhya V, Ali SKZ, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-p45. Biol Fertil Soils 46:17–26

    CAS  Google Scholar 

  • Schippers B, Bakker AW, Bakker PAHM (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu Rev Phytopathol 25:339–358

    Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    CAS  PubMed  Google Scholar 

  • Soussi M, Santamaría M, Ocaña A, Lluch C (2001) Effects of salinity on protein and lipopolysaccharide pattern in a salt-tolerant strain of Mesorhizobium ciceri. J Appl Microbiol 90:476–481

    CAS  PubMed  Google Scholar 

  • Sun L, Vella P, Schnell R, Polyakova A, Bourenkov G, Li F, Cimdins A, Schneider TR, Lindqvist Y, Galperin MY, Schneider G, Römling U (2018) Structural and functional characterization of the BcsG subunit of the cellulose synthase in Salmonella typhimurium. J Mol Biol 430:3170–3189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tewari S, Arora NK (2014) Talc based exopolysaccharides formulation enhancing growth and production of Hellianthus annuus under saline conditions. Cell Mol Biol 60:73–81

    CAS  PubMed  Google Scholar 

  • Trombley MP, Post DMB, Rinker SD, Reinders LM, Fortney KR, Zwickl BW, Janowicz DM, Baye FM, Katz BP, Spinola SM, Bauer ME (2015) Phosphoethanolamine transferase EptA in Haemophilus ducreyi modifies lipid a and contributes to human defensin resistance in vitro. PLoS One 10(4):e0124373

    PubMed  PubMed Central  Google Scholar 

  • Upadhyay SK, Singh JS, Singh DP (2011) Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere 21:214–222

    CAS  Google Scholar 

  • Vaishnav A, Ajit V, Narendra T, Devendra K (2017) PGPR-mediated amelioration of crops under salt stress. Springer, Singapore

    Google Scholar 

  • Walkley A, Black IA (1934) An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–37

    CAS  Google Scholar 

  • Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46(W1):W296–W303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei W, Jiang J, Li X, Wang L, Yang SS (2004) Isolation of salt-sensitive mutants from Sinorhizobium meliloti and characterization of genes involved in salt tolerance. Lett Appl Microbiol 39:278–283

    CAS  PubMed  Google Scholar 

  • Whatmore AM, Chudek JA, Reed RH (1990) The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis. J Gen Microbiol 136:2527–2535

    CAS  PubMed  Google Scholar 

  • Wu X, Monchy S, Taghavi S, Zhu W, Ramos J, van der Lelie D (2011) Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev 35:299–323

    CAS  PubMed  Google Scholar 

  • Yan K, Shao H, Shao C, Chen P, Zhao S, Brestic M, Chen X (2013) Physiological adaptive mechanisms of plants grown in saline soil and implications for sustainable saline agriculture in coastal zone. Acta Physiol Plant 35:2867–2878

    CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    CAS  PubMed  Google Scholar 

  • Yao L, Wu Z, Zheng Y, Kaleem I, Li C (2010) Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur J Soil Biol 46:49–54

    CAS  Google Scholar 

  • Yousef-Coronado F, Travieso ML, Espinosa-Urgel M (2008) Different, overlapping mechanisms for colonization of abiotic and plant surfaces by Pseudomonas putida. FEMS Microbiol Lett 288:118–124

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. Priscilla R. de Gregorio for help with the statistical analysis and useful suggestions to the manuscript.

Disclaimer

The funders had no role in the experimental design, data collection, interpretation, or the decision to submit the work for publication.

Funding

This work was supported by the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT; grant PICT 2222) and Consejo de Investigaciones Científicas y Técnicas (CONICET; grant PIP 908/15) and partly supported by EMHE-CSIC (grant MHE200019) and Plan Estatal de I + D + I (MINECO and EFRD funds, grant BFU2016–80122-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo E. de Cristóbal.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 450 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa-Gutierrez, S.B., Lami, M.J., Santo, M.C.CD. et al. Plant growth promotion by Pseudomonas putida KT2440 under saline stress: role of eptA. Appl Microbiol Biotechnol 104, 4577–4592 (2020). https://doi.org/10.1007/s00253-020-10516-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10516-z

Keywords

Navigation