Skip to main content

Advertisement

Log in

Engineering Clostridium for improved solvent production: recent progress and perspective

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Clostridia are Gram-positive, spore-forming, obligate anaerobic bacteria that can produce solvents such as acetone, ethanol, and butanol, which can be used as biofuels or building block chemicals. Many successful attempts have been made to improve solvent yield and titer from sugars through metabolic engineering of solventogenic and acidogenic clostridia. More recently, cellulolytic and acetogenic clostridia have also attracted high interests for their ability to utilize low-cost renewable substrates such as cellulose and syngas. Process engineering such as in situ butanol recovery and consolidated bioprocessing (CBP) has been developed for improved solvent titer and productivity. This review focuses on metabolic and process engineering strategies for solvent production from sugars, lignocellulosic biomass, and syngas by various clostridia, including conventional solventogenic Clostridium acetobutylicum, engineered acidogens such as C. tyrobutyricum and C. cellulovorans, and carboxydotrophic acetogens such as C. carboxidivorans and C. ljungdahlii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrini J, Naveau H, Nyns EJ (1994) Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch Microbiol 161(4):345–351

    Article  CAS  Google Scholar 

  • Abubackar HN, Veiga MC, Kennes C (2012) Biological conversion of carbon monoxide to ethanol: effect of pH, gas pressure, reducing agent and yeast extract. Bioresour Technol 114:518–522

    Article  CAS  PubMed  Google Scholar 

  • Abubackar HN, Veiga MAC, Kennes C (2015) Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid. Bioresour Technol 186:122–127

    Article  CAS  PubMed  Google Scholar 

  • Abubackar HN, Fernández-Naveira Á, Veiga MC, Kennes C (2016) Impact of cyclic pH shifts on carbon monoxide fermentation to ethanol by Clostridium autoethanogenum. Fuel 178:56–62

    Article  CAS  Google Scholar 

  • Abubackar HN, Veiga MC, Kennes C (2018) Production of acids and alcohols from syngas in a two-stage continuous fermentation process. Bioresour Technol 253:227–234

    Article  CAS  PubMed  Google Scholar 

  • Akinosho H, Yee K, Close D, Ragauskas A (2014) The emergence of Clostridium thermocellum as a high utility candidate for consolidated bioprocessing applications. Front Chem 2:66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alsaker KV, Spitzer TR, Papoutsakis ET (2004) Transcriptional analysis of spo0A overexpression in Clostridium acetobutylicum and its effect on the cell’s response to butanol stress. J Bacteriol 186(7):1959–1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asimakopoulos K, Gavala HN, Skiadas IV (2018) Reactor systems for syngas fermentation processes: a review. Chem Eng J 384:732–744

    Article  CAS  Google Scholar 

  • Baer SH, Blaschek HP, Smith TL (1987) Effect of butanol challenge and temperature on lipid composition and membrane fluidity of butanol-tolerant Clostridium acetobutylicum. Appl Environ Microbiol 53(12):2854–2861

    CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee A, Leang C, Ueki T, Nevin KP, Lovley DR (2014) A lactose-inducible system for metabolic engineering of Clostridium ljungdahlii. Appl Environ Microbiol 80(8):2410–2416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao T, Cheng C, Xin X, Wang J, Wang M, Yang ST (2019a) Deciphering mixotrophic Clostridium formicoaceticum metabolism and energy conservation: genomic analysis and experimental studies. Genomics. In press. https://doi.org/10.1016/j.ygeno.2018.11.020

  • Bao T, Zhao J, Li J, Liu X, Yang ST (2019b) n-Butanol and ethanol production by Clostridium cellulovorans overexpressing aldehyde/alcohol dehydrogenases from Clostridium acetobutylicum. Bioresour Technol 285:121316

    Article  CAS  PubMed  Google Scholar 

  • Berzin V, Tyurin M, Kiriukhin M (2013) Selective n-butanol production by Clostridium sp. MTButOH1365 during continuous synthesis gas fermentation due to expression of synthetic thiolase, 3-hydroxy butyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase, butyraldehyde dehydrogenase, and NAD-dependent butanol dehydrogenase. Appl Biochem Biotechnol 169(3):950–959

    Article  CAS  PubMed  Google Scholar 

  • Biswas R, Zheng T, Olson DG, Lynd LR, Guss AM (2015) Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum. Biotechnol Biofuels 8:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borden JR, Papoutsakis ET (2007) Dynamics of genomic-library enrichment and identification of solvent tolerance genes for Clostridium acetobutylicum. Appl Environ Microbiol 73(9):3061–3068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bredwell MD, Worden RM (1998) Mass-transfer properties of microbubbles. 1. Experimental studies. Biotechnol Prog 14(1):31–38

    Article  CAS  PubMed  Google Scholar 

  • Brown SD, Guss AM, Karpinets TV, Parks JM, Smolin N, Yang S, Land ML, Klingeman DM, Bhandiwad A, Rodriguez M Jr, Raman B, Shao X, Mielenz JR, Smith JC, Keller M, Lynd LR (2011) Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum. PNAS 108(33):13752–13757

    Article  PubMed  Google Scholar 

  • Cai D, Chang Z, Gao L, Chen C, Niu Y, Qin P, Wang Z, Tan T (2015) Acetone-butanol-ethanol (ABE) fermentation integrated with simplified gas stripping using sweet sorghum bagasse as immobilized carrier. Chem Eng J 277:176–185

    Article  CAS  Google Scholar 

  • Cai D, Chen H, Chen C, Hu S, Wang Y, Chang Z, Miao Q, Qin P (2016) Gas stripping-pervaporation hybrid process for energy-saving product recovery from acetone-butanol-ethanol (ABE) fermentation broth. Chem Eng J 287:1–10

    Article  CAS  Google Scholar 

  • Cai D, Hu S, Miao Q, Chen C, Chen H, Zhang C, Li P, Qin P (2017) Two-stage pervaporation process for effective in situ removal acetone-butanol-ethanol from fermentation broth. Bioresour Technol 224:380–388

    Article  CAS  PubMed  Google Scholar 

  • Charubin K, Papoutsakis ET (2019) Direct cell-to-cell exchange of matter in a synthetic Clostridium syntrophy enables CO2 fixation, superior metabolite yields, and an expanded metabolic space. Metab Eng 52:9–19

    Article  CAS  PubMed  Google Scholar 

  • Charubin K, Bennett RK, Fast AG, Papoutsakis ET (2018) Engineering Clostridium organisms as microbial cell-factories: challenges & opportunities. Metab. Eng. 50:173–191

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Henson MA (2016) In silico metabolic engineering of Clostridium ljungdahlii for synthesis gas fermentation. Metab Eng 38:389–400

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Ren H, Liu D, Zhao T, Shi X, Cheng H, Zhao N, Li Z, Li B, Niu H, Zhuang W, Xie J, Chen X, Wu J, Ying H (2014) Enhancement of n-butanol production by in situ butanol removal using permeating-heating-gas stripping in acetone-butanol-ethanol fermentation. Bioresour Technol 164:276–284

    Article  CAS  PubMed  Google Scholar 

  • Chen WH, Lin BJ, Huang MY, Chang JS (2015) Thermochemical conversion of microalgal biomass into biofuels: a review. Bioresour Technol 184:314–327

    Article  CAS  PubMed  Google Scholar 

  • Chen LJ, Wu YD, Xue C, Bai FW (2017) Improving fructose utilization and butanol production by Clostridium acetobutylicum via extracellular redox potential regulation and intracellular metabolite analysis. Biotechnol J 12(10):1700198

    Article  CAS  Google Scholar 

  • Cheng C, Li W, Lin M, Yang ST (2019) Metabolic engineering of Clostridium carboxidivorans for enhanced ethanol and butanol production from syngas and glucose. Bioresour Eng 284:415–423

    Article  CAS  Google Scholar 

  • Collas F, Kuit W, Clément B, Marchal R, López-Contreras AM, Monot F (2012) Simultaneous production of isopropanol, butanol, ethanol and 2,3-butanediol by Clostridium acetobutylicum ATCC 824 engineered strains. AMB Express 2:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooksley C, Zhang Y, Wang H, Redl S, Winzer K, Minton N (2012) Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway. Metab Eng 14(6):630–641

    Article  CAS  PubMed  Google Scholar 

  • Dai Z, Dong H, Zhu Y, Zhang Y, Li Y, Ma Y (2012) Introducing a single secondary alcohol dehydrogenase into butanol-tolerant Clostridium acetobutylicum Rh8 switches ABE fermentation to high level IBE fermentation. Biotechnol Biofuels 5:44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng Y, Olson DG, Zhou JL, Herring CD, Shaw AJ, Lynd LR (2013) Redirecting carbon flux through exogenous pyruvate kinase to achieve high ethanol yields in Clostridium thermocellum. Metab Eng 15:151–158

    Article  CAS  PubMed  Google Scholar 

  • Desai RP, Papoutsakis ET (1999) Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum. Appl Environ Microbiol 65(3):936–945

    CAS  PubMed  PubMed Central  Google Scholar 

  • Du Y, Jiang W, Yu M, Tang IC, Yang ST (2015) Metabolic process engineering of Clostridium tyrobutyricum Δack-adhE2 for enhanced n-butanol production from glucose: effects of methyl viologen on NADH availability, flux distribution, and fermentation kinetics. Biotechnol Bioeng 112(4):705–715

    Article  CAS  PubMed  Google Scholar 

  • Durán-Padilla VR, Davila-Vazquez G, Chávez-Vela NA, Tinoco-Valencia JR, Jáuregui-Rincón J (2014) Iron effect on the fermentative metabolism of Clostridium acetobutylicum ATCC 824 using cheese whey as substrate. Biofuel Res J 1(4):129–133

    Article  Google Scholar 

  • Dürre P (2011) Fermentative production of butanol-the academic perspective. Curr Opin Biotechnol 22(2):331–336

    Article  CAS  PubMed  Google Scholar 

  • Dusséaux S, Croux C, Soucaille P, Meynial-Salles I (2013) Metabolic engineering of Clostridium acetobutylicum ATCC 824 for the high-yield production of a biofuel composed of an isopropanol/butanol/ethanol mixture. Metab Eng 18:1–8

    Article  CAS  PubMed  Google Scholar 

  • Ezeji TC, Qureshi N, Blaschek HP (2003) Production of acetone, butanol and ethanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping. World J Microbiol Biotechnol 19(6):595–603

    Article  CAS  Google Scholar 

  • Ezeji TC, Qureshi N, Blaschek HP (2004) Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Appl Microbiol and Biotechnol 63(6):653–658

    Article  CAS  Google Scholar 

  • Ezeji TC, Qureshi N, Blaschek HP (2007) Production of acetone butanol (AB) from liquefied corn starch, a commercial substrate, using Clostridium beijerinckii coupled with product recovery by gas stripping. J Ind Microbiol Biotechnol 34(12):771–777

    Article  CAS  PubMed  Google Scholar 

  • Fast AG, Papoutsakis ET (2012) Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals. Curr Opin Chem Eng 1(4):380–395

    Article  Google Scholar 

  • Fast AG, Schmidt ED, Jones SW, Tracy BP (2015) Acetogenic mixotrophy: novel options for yield improvement in biofuels and biochemicals production. Curr Opin Biotechnol 33:60–72

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Naveira Á, Abubackar HN, Veiga MC, Kennes C (2017) Production of chemicals from C1 gases (CO, CO2) by Clostridium carboxidivorans. World J Microbiol Biotechnol 33(3):43

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Naveira Á, Veiga MC, Kennes C (2019) Selective anaerobic fermentation of syngas into either C2-C6 organic acids or ethanol and higher alcohols. Bioresour Technol 280:387–395

    Article  CAS  PubMed  Google Scholar 

  • Gaida SM, Liedtke A, Jentges AH, Engels B, Jennewein S (2016) Metabolic engineering of Clostridium cellulolyticum for the production of n-butanol from crystalline cellulose. Microb Cell Fact 15(6)

  • Ganigué R, Sánchez-Paredes P, Bañeras L, Colprim J (2016) Low fermentation pH is a trigger to alcohol production, but a killer to chain elongation. Front Microbiol 7:702

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao J, Atiyeh HK, Phillips JR, Wilkins MR, Huhnke RL (2013) Development of low cost medium for ethanol production from syngas by Clostridium ragsdalei. Bioresour Technol 147:508–515

    Article  CAS  PubMed  Google Scholar 

  • George HA, Johnson JL, Moore WEC, Holdeman LV, Chen JS (1983) Acetone, isopropanol, and butanol production by Clostridium beijerinckii (syn. Clostridium butylicum) and Clostridium aurantibutyricum. Appl Environ Microbiol 45(3):1160–1163

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Gérando HM, Wasels F, Bisson A, Clement B, Bidard F, JourdierE, López-Contreras AM, Ferreira NL (2018) Genome and transcriptome of the natural isopropanol producer Clostridium beijerinckii DSM6423. BMC Genomics 19: 242

  • Girbal L, Vasconcelos I, Saint-Amans S, Soucaille P (1995) How neutral red modified carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH. FEMS Microbiol Rev 16(2–3):151–162

    Article  CAS  Google Scholar 

  • González-Pajuelo M, Meynial-Salles I, Mendes F, Andrade J, Vasconcelos I, Soucaille P (2005) Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol. Metab Eng 7(5–6):329–336

    Article  CAS  PubMed  Google Scholar 

  • Green EM, Boynton ZL, Harris LM, Rudolph FB, Papoutsakis ET, Bennett GN (1996) Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. J Gen Microbiol 142(8):2079–2086

    CAS  Google Scholar 

  • Guedon E, Desvaux M, Petitdemange H (2002) Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Appl Environ Microbiol 68(1):53–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris LM, Desai RP, Welker NE, Papoutsakis ET (2000) Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnol Bioeng 67(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Harris LM, Blank L, Desai RP, Welker NE, Papoutsakis ET (2001) Fermentation characterization and flux analysis of recombinant strains of Clostridium acetobutylicum with an inactivated solR gene. J Ind Microbiol Biotechnol 27(5):322–328

    Article  CAS  PubMed  Google Scholar 

  • Higashide W, Li Y, Yang Y, Liao JC (2011) Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose. Appl Environ Microbiol 77(8):2727–2733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillmann F, Fischer R-JJ, Saint-Prix F, Girbal L, Bahl H (2008) PerR acts as a switch for oxygen tolerance in the strict anaerobe Clostridium acetobutylicum. Mol Microbiol 68(4):848–860

    Article  CAS  PubMed  Google Scholar 

  • Hon S, Lanahan AA, Tian L, Giannone RJ, Hettich RL, Olson DG, Lynd LR (2016) Development of a plasmid-based expression system in Clostridium thermocellum and its use to screen heterologous expression of bifunctional alcohol dehydrogenases (adhEs). Metab Eng Commun 3:120–129

    Article  PubMed  PubMed Central  Google Scholar 

  • Hon S, Olson DG, Holwerda EK, Lanahan AA, Murphy SJ, Maloney MI, Zheng T, Papanek B, Guss AM, Lynd LR (2017) The ethanol pathway from Thermoanaerobacterium saccharolyticum improves ethanol production in Clostridium thermocellum. Metab Eng 42:175–184

    Article  CAS  PubMed  Google Scholar 

  • Hon S, Holwerda EK, Worthen RS, Maloney MI, Tian L, Cui J, Lin PP, Lynd LR, Olson DG (2018) Expressing the Thermoanaerobacterium saccharolyticum pforA in engineered Clostridium thermocellum improves ethanol production. Biotechnol Biofuels 11:242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou X, Peng W, Xiong L, Huang C, Chen X, Chen X, Zhang W (2013) Engineering Clostridium acetobutylicum for alcohol production. J Biotechnol 166(1–2):25–33

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Chai C, Li N, Rowe P, Minton NP, Yang S, Jiang W, Gu Y (2016) CRISPR/Cas9-based efficient genome editing in Clostridium ljungdahlii, an autotrophic gas-fermenting bacterium. ACS Synth Biol 5(12):1355–1361

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Chai C, Yang S, Jiang W, Gu Y (2019) Phage serine integrase-mediated genome engineering for efficient expression of chemical biosynthetic pathway in gas-fermenting Clostridium ljungdahlii. Metab Eng 52:293–302

    Article  CAS  PubMed  Google Scholar 

  • Jang YS, Lee JY, Lee J, Park JH, Im JA, Eom MH, Lee J, Lee SH, Song H, Cho JH, Seung DY, Lee SY (2012) Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum. MBio 3(5):e00314–e00312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang YS, Malaviya A, Lee J, Im JA, Lee SY, Lee J, Eom MH, Cho JH, Seung DY (2013) Metabolic engineering of Clostridium acetobutylicum for the enhanced production of isopropanol-butanol-ethanol fuel mixture. Biotechnol Progr 29(4):1083–1088

    Article  CAS  Google Scholar 

  • Jiang Y, Xu C, Dong F, Yang Y, Jiang W, Yang S (2009) Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio. Metab Eng 11(4–5):284–291

    Article  CAS  PubMed  Google Scholar 

  • Jiang M, Chen JN, He AY, Wu H, Kong XP, Liu JL, Yin CY, Chen WF, Chen P (2014) Enhanced acetone/butanol/ethanol production by Clostridium beijerinckii IB4 using pH control strategy. Process Biochem 49(8):1238–1244

    Article  CAS  Google Scholar 

  • Jiang Y, Liu J, Jiang W, Yang Y, Yang S (2015) Current status and prospects of industrial bio-production of n-butanol in China. Biotechnol Adv 33(7):1493–1501

    Article  CAS  PubMed  Google Scholar 

  • Jin L, Zhang H, Chen L, Yang C, Yang S, Jiang W, Gu Y (2014) Combined overexpression of genes involved in pentose phosphate pathway enables enhanced D-xylose utilization by Clostridium acetobutylicum. J Biotechnol 173:7–9

    Article  CAS  PubMed  Google Scholar 

  • Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev. 50:484–524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones SW, Paredes CJ, Tracy B, Cheng N, Sillers R, Senger RS, Papoutsakis ET (2008) The transcriptional program underlying the physiology of clostridial sporulation. Genome Biol 9(7):R114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones SW, Fast AG, Carlson ED, Wiedel CA, Au J, Antoniewicz MR, Papoutsakis ET, Tracy BP (2016) CO2 fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion. Nat Commun 7:12800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kannuchamy S, Mukund N, Saleena LM (2016) Genetic engineering of Clostridium thermocellum DSM1313 for enhanced ethanol production. BMC Biotechnol 16(Suppl 1):34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klasson KT, Ackerson MD, Clausen EC, Gaddy JL (1991) Bioreactor design for synthesis gas fermentations. Fuel 70(5):605–614

    Article  CAS  Google Scholar 

  • Klasson KT, Ackerson CMD, Clausen EC, Gaddy JL (1992) Biological conversion of synthesis gas into fuels. Int J Hyd Energy 17(4):281–288

    Article  CAS  Google Scholar 

  • Klasson KT, Ackerson MD, Clausen EC, Gaddy JL (1993) Biological conversion of coal and coal-derived synthesis gas. Fuel 72(12):1673–1678

    Article  CAS  Google Scholar 

  • Köpke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk G, Dürre P (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. PNAS 107(29):13087–13092

    Article  PubMed  Google Scholar 

  • Köpke M, Mihalcea C, Liew F, Tizard JH, Ali MS, Conolly JJ, Al-Sinawi B, Simpson SD (2011) 2,3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Appl Environ Microbiol 77(15):5467–5475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuit W, Minton N, López-Contreras A, Eggink G (2012) Disruption of the acetate kinase (ack) gene of Clostridium acetobutylicum results in delayed acetate production. Appl Microbiol Biotechnol 94(3):729–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kundiyana DK, Huhnke RL, Wilkins MR (2010) Syngas fermentation in a 100-L pilot scale fermentor: design and process considerations. J Biosci Bioeng 109(5):492–498

    Article  CAS  PubMed  Google Scholar 

  • Kundiyana DK, Wilkins MR, Maddipati P, Huhnke RL (2011) Effect of temperature, pH and buffer presence on ethanol production from synthesis gas by "Clostridium ragsdalei". Bioresour Technol 102(10):5794–5799

    Article  CAS  PubMed  Google Scholar 

  • Leang C, Ueki T, Nevin KP, Lovley DR (2013) A genetic system for Clostridium ljungdahlii: a chassis for autotrophic production of biocommodities and a model homoacetogen. Appl Environ Microbiol 79(4):1102–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS (2008) Fermentative butanol production by Clostridia. Biotechnol Bioeng 101(2):209–228

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Jang YS, Choi SJ, Im JA, Song H, Cho JH, Seung DY, Papoutsakis ET, Bennett GN, Lee SY (2012) Metabolic engineering of Clostridium acetobutylicum ATCC 824 for isopropanol-butanol-ethanol fermentation. Appl Environ Microbiol 78(5):1416–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SH, Yun EJ, Kim J, Lee SJ, Um Y, Kim KH (2016) Biomass, strain engineering, and fermentation processes for butanol production by solventogenic clostridia. Appl Microbiol Biotechnol 100(19):8255–8271

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Tschaplinski TJ, Engle NL, Hamilton CY, Rodriguez M Jr, Liao JC, Schadt CW, Guss AM, Yang Y, Graham DE (2012) Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations. Biotechnol Biofuels 5(1):2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Chen X, Qi B, Luo J, Zhang Y, Su Y, Wan Y (2014a) Efficient production of acetone-butanol-ethanol (ABE) from cassava by a fermentation-pervaporation coupled process. Bioresour Technol 169:251–257

    Article  CAS  PubMed  Google Scholar 

  • Li J, Chen X, Qi B, Luo J, Zhuang X, Su Y, Wan Y (2014b) Continuous acetone-butanol-ethanol (ABE) fermentation with in situ solvent recovery by silicalite-1 filled PDMS/PAN composite membrane. Energy Fuels 28(1):555–562

    Article  CAS  Google Scholar 

  • Li Q, Chen J, Minton NP, Zhang Y, Wen Z, Liu J, Yang H, Zeng Z, Ren X, Yang J, Gu Y, Jiang W, Jiang Y, Yang S (2016) CRISPR-based genome editing and expression control systems in Clostridium acetobutylicum and Clostridium beijerinckii. Biotechnol J 11(7):961–972

    Article  CAS  PubMed  Google Scholar 

  • Liew F, Henstra AM, Winzer K, Köpke M, Simpson SD, Minton NP (2016) Insights into CO2 fixation pathway of Clostridium autoethanogenum by targeted mutagenesis. MBio 7(3):e00427–e00416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liew F, Henstra AM, Kӧpke M, Winzer K, Simpson SD, Minton NP (2017) Metabolic engineering of Clostridium autoethanogenum for selective alcohol production. Metab Eng 40:104–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin PP, Mi L, Moriok AH, Yoshino MM, Konishi S, Xu SC, Papanek BA, Riley LA, Guss AM, Liao JC (2015) Consolidated bioprocessing of cellulose to isobutanol using Clostridium thermocellum. Metab Eng 31:44–52

    Article  CAS  PubMed  Google Scholar 

  • Liou JS-C, Balkwill DL, Drake GR, Tanner RS (2005) Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol 55:2085–2091

    Article  CAS  PubMed  Google Scholar 

  • Lo J, Zheng T, Hon S, Olson DG, Lynd LR (2015) The bifunctional alcohol and aldehyde dehydrogenase gene, adhE, is necessary for ethanol production in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. J Bacteriol 197:1386–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo J, Olson DG, Murphy SJ, Tian L, Hon S, Lanahan A, Guss AM, Lynd LR (2017) Engineering electron metabolism to increase ethanol production in Clostridium thermocellum. Metab Eng 39:71–79

    Article  CAS  PubMed  Google Scholar 

  • Lu KM, Li SY (2014) An integrated in situ extraction-gas stripping process for acetone-butanol-ethanol (ABE) fermentation. J Taiwan Inst Chem E 45(5):2106–2110

    Article  CAS  Google Scholar 

  • Lu C, Zhao J, Yang ST, Wei D (2012) Fed-batch fermentation for n-butanol production from cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas stripping. Bioresour Technol 104:380–387

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Dong J, Yang ST (2013) Butanol production from wood pulping hydrolysate in an integrated fermentation-gas stripping process. Bioresour Technol 143:467–475

    Article  CAS  PubMed  Google Scholar 

  • Lu KM, Chiang YS, Wang YR, Chein RY, Li SY (2016) Performance of fed-batch acetone-butanol-ethanol (ABE) fermentation coupled with the integrated in situ extraction-gas stripping process and the fractional condensation. J Taiwan Inst Chem E 60:119–123

    Article  CAS  Google Scholar 

  • Lu C, Yu L, Varghese S, Yu M, Yang ST (2017) Enhanced robustness in acetone-butanol-ethanol fermentation with engineered Clostridium beijerinckii overexpressing adhE2 and ctfAB. Bioresour Technol 243:1000–1008

    Article  CAS  PubMed  Google Scholar 

  • Lynd L, Kerby R, Zeikus JG (1982) Carbon monoxide metabolism of the methylotrophic acidogen Butyribacterium methylotrophicum. J Bacteriol 149(1):255–263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16(5):577–583

    Article  CAS  PubMed  Google Scholar 

  • Maddipati P, Atiyeh HK, Bellmer DD, Huhnke RL (2011) Ethanol production from syngas by Clostridium strain P11 using corn steep liquor as a nutrient replacement to yeast extract. Bioresour Technol 102(11):6494–6501

    Article  CAS  PubMed  Google Scholar 

  • Mann M, Lütke-Eversloh T (2013) Thiolase engineering for enhanced butanol production in Clostridium acetobutylicum. Biotechnol Bioeng 110(3):887–897

    Article  CAS  PubMed  Google Scholar 

  • Mann MS, Dragovic Z, Schirrmacher G, Lütke-Eversloh T (2012) Over-expression of stress protein-encoding genes helps Clostridium acetobutylicum to rapidly adapt to butanol stress. Biotechnol Lett 34(9):1643–1649

    Article  CAS  PubMed  Google Scholar 

  • Marcellin E, Behrendorff JB, Nagaraju S, DeTissera S, Segovia S, Palfreyman RW, Daniell J, Licona-Cassani C, Quek L, Speight R, Hodson MP, Simpson SD, Mitchell WP, Köpke M, Nielsen LK (2016) Low carbon fuels and commodity chemicals from waste gases - systematic approach to understand energy metabolism in a model acetogen. Green Chem 18(10):3020–3028

    Article  CAS  Google Scholar 

  • Maru BT, Munasinghe PC, Gilary H, Jones SW, Tracy BP (2018) Fixation of CO2 and CO on a diverse range of carbohydrates using anaerobic, non-photosynthetic mixotrophy. FEMS Microbiol Lett 365(8):fny039

    Article  CAS  Google Scholar 

  • McNeil B, Kristiahsen B (1985) Effect of temperature upon growth rate and solvent production in batch cultures of Clostridium acetobutylicum. Biotechnol Lett 7(7):499–502

    Article  CAS  Google Scholar 

  • Mermelstein LD, Papoutsakis ET (1993) In vivo methylation in Escherichia coli by the Bacillus subtilis phage φ3T I methyltransferase to protect plasmids from restriction upon transformation of Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 59(4):1077–1081

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mermelstein LD, Welker NE, Bennett GN, Papoutsakis ET (1992) Expression of cloned homologous fermentative genes in Clostridium acetobutylicum ATCC 824. Nat Biotechnol 10(2):190–195

    Article  CAS  Google Scholar 

  • Molitor B, Kirchner K, Henrich AW, Schmitz S, Rosenbaum MA (2016) Expanding the molecular toolkit for the homoacetogen Clostridium ljungdahlii. Sci Rep 6:31518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon YH, Han KJ, Kim D, Day DF (2015) Enhanced production of butanol and isopropanol from sugarcane molasses using Clostridium beijerinckii optinoii. Biotechnol Bioprocess Eng 20(5):871–877

    Article  CAS  Google Scholar 

  • Moon HG, Jang YS, Cho C, Lee J, Binkley R, Lee SY (2016) One hundred years of clostridial butanol fermentation. FEMS Microbiol Lett 363(3):fnw001

    Article  CAS  PubMed  Google Scholar 

  • Munasinghe PC, Khanal SK (2012) Syngas fermentation to biofuel: evaluation of carbon monoxide mass transfer and analytical modeling using a composite hollow fiber (CHF) membrane bioreactor. Bioresour Technol 122:130–136

    Article  CAS  PubMed  Google Scholar 

  • Nagarajan H, Sahin M, Nogales J, Latif H, Lovley DR, Ebrahim A, Zengler K (2013) Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii. Microb Cell Factories 12:118

    Article  CAS  Google Scholar 

  • Nagaraju S, Davies NK, Walker DJF, Köpke M, Simpson SD (2016) Genome editing of Clostridium autoethanogenum using CRISPR/Cas9. Biotechnol Biofuels 9:219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakayama S, Kiyoshi K, Kadokura T, Nakazato A (2011) Butanol production from crystalline cellulose by cocultured Clostridium thermocellum and Clostridium saccharoperbutylacetonicum N1-4. Appl Environ Microbiol 77(18):6470–6475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakayama S, Bando Y, Ohnishi A, Kadokura T, Nakazato A (2013) Decreased hydrogen production leads to selective butanol production in co-cultures of Clostridium thermocellum and Clostridium saccharoperbutylacetonicum strain N1-4. J Biosci Bioeng 115(2):173–175

    Article  CAS  PubMed  Google Scholar 

  • Nguyen NPT, Raynaud C, Meynial-Salles I, Soucaille P (2018) Reviving the Weizmann process for commercial n-butanol production. Nat Commun 9:3682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olson DG, McBride JE, Shaw JA, Lynd LR (2012) Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 23:396–405

    Article  CAS  PubMed  Google Scholar 

  • Orgill JJ, Atiyeh HK, Devarapalli M, Phillips JR, Lewis RS, Huhnke RL (2013) A comparison of mass transfer coefficients between trickle-bed, hollow fiber membrane and stirred tank reactors. Bioresour Technol 133:340–346

    Article  CAS  PubMed  Google Scholar 

  • Ou J, Ma C, Xu N, Du Y, Liu XM (2015) High butanol production by regulating carbon, redox and energy in clostridia. Front Chem Sci Eng 9(3):317–323

    Article  CAS  Google Scholar 

  • Ou J, Xu N, Ernst P, Ma C, Bush M, Goh K, Zhao J, Zhou L, Yang ST, Liu X (2017) Process engineering of cellulosic n-butanol production from corn-based biomass using Clostridium cellulovorans. Process Biochem 62:144–150

    Article  CAS  Google Scholar 

  • Papanek B, Biswas R, Rydzak T, Guss AM (2015) Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum. Metab Eng 32:49–54

    Article  CAS  PubMed  Google Scholar 

  • Papoutsakis ET (2008) Engineering solventogenic clostridia. Curr Opin Biotechnol 19(5):420–429

    Article  CAS  PubMed  Google Scholar 

  • Peabody GL, Kao KC (2016) Recent progress in biobutanol tolerance in microbial systems with an emphasis on Clostridium. FEMS Microbiol Lett 363:fnw017

    Article  CAS  PubMed  Google Scholar 

  • Petitdemange E, Fond O, Caillet F, Petitdemange H, Gay R (1983) A novel one-step process for cellulose fermentation using mesophilic cellulolytic and glycolytic clostridia. Biotechnol Lett 5(2):119–124

    Article  CAS  Google Scholar 

  • Phillips JR, Atiyeh HK, Tanner RS, Torres JR, Saxena J, Wilkins MR, Huhnke RL (2015) Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation: medium development and culture techniques. Bioresour Technol 190:114–121

    Article  CAS  PubMed  Google Scholar 

  • Qureshi N, Blaschek HP (2000) Butanol production using Clostridium beijerinckii BA101 hyper-butanol producing mutant strain and recovery by pervaporation. Appl Biochem Biotechnol 84-86:225–235

    Article  CAS  PubMed  Google Scholar 

  • Ramió-Pujol S, Ganigué R, Bañeras L, Colprim J (2015) Incubation at 25°C prevents acid crash and enhances alcohol production in Clostridium carboxidivorans P7. Bioresour Technol 192:296–303

    Article  CAS  PubMed  Google Scholar 

  • Ren C, Gu Y, Hu S, Wu Y, Wang P, Yang Y, Yang C, Yang S, Jiang W (2010) Identification and inactivation of pleiotropic regulator CcpA to eliminate glucose repression of xylose utilization in Clostridium acetobutylicum. Metab Eng 12(5):446–454

    Article  CAS  PubMed  Google Scholar 

  • Richter H, Martin ME, Angenent LT (2013) A two-stage continuous fermentation system for conversion of syngas into ethanol. Energies 6(8):3987–4000

    Article  CAS  Google Scholar 

  • Rydzak T, Garcia D, Stevenson DM, Sladek M, Klingeman DM, Holwerda EK, Amador-Noguez D, Brown SD, Guss AM (2017) Deletion of type I glutamine synthetase deregulates nitrogen metabolism and increases ethanol production in Clostridium thermocellum. Metab Eng 41:182–191

    Article  CAS  PubMed  Google Scholar 

  • Salehi Jouzani G, Taherzadeh MJ (2015) Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: a comprehensive review. Biofuel Research J 2:152–195

    Article  Google Scholar 

  • Salimi F, Mahadevan R (2013) Characterizing metabolic interactions in a clostridial co-culture for consolidated bioprocessing. BMC Biotechnol 13:95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salimi F, Zhuang K, Mahadevan R (2010) Genome-scale metabolic modeling of a clostridial co-culture for consolidated bioprocessing. Biotechnol J 5(7):726–738

    Article  CAS  PubMed  Google Scholar 

  • Saxena J, Tanner RS (2011) Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen, Clostridium ragsdalei. J Ind Microbiol Biotechnol 38(4):513–521

    Article  CAS  PubMed  Google Scholar 

  • Schuchmann K, Muller V (2014) Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat Rev Microbiol 12(12):809–821

    Article  CAS  PubMed  Google Scholar 

  • Scotcher MC, Bennett GN (2005) SpoIIE regulates sporulation but does not directly affect solventogenesis in Clostridium acetobutylicum ATCC 824. J Bacteriol 187(6):1930–1936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao L, Hu S, Yang Y, Gu Y, Chen J, Yang Y, Jiang W, Yang S (2007) Targeted gene disruption by use of a group II intron (targetron) vector in Clostridium acetobutylicum. Cell Res 17(11):963–965

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Brown R, Wen Z (2014) Syngas fermentation of Clostridium carboxidivoran P7 in a hollow fiber membrane biofilm reactor: evaluating the mass transfer coefficient and ethanol production performance. Biochem Eng J 85:21–29

    Article  CAS  Google Scholar 

  • Shen S, Gu Y, Chai C, Jiang W, Zhuang Y, Wang Y (2017) Enhanced alcohol titer and ratio in carbon monoxide-rich off-gas fermentation of Clostridium carboxidivorans through combination of trace metals optimization with variable-temperature cultivation. Bioresour Technol 239:236–243

    Article  CAS  PubMed  Google Scholar 

  • Siemerink MA, Kuit W, López Contreras AM, Eggink G, van der OJ, Kengen SWW (2011) D-2,3-butanediol production due to heterologous expression of an acetoin reductase in Clostridium acetobutylicum. Appl Environ Microbiol 77(8):2582–2588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sillers R, Al-Hinai ML, Papoutsakis ET (2009) Aldehyde-alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in Clostridium acetobutylicum fermentations. Biotechnol Bioeng 102(1):38–49

    Article  CAS  PubMed  Google Scholar 

  • Straub M, Demler M, Weuster-Botz D, Dürre P (2014) Selective enhancement of autotrophic acetate production with genetically modified Acetobacterium woodii. J Biotechnol 178:67–72

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Atiyeh HK, Kumar A, Zhang H (2018a) Enhanced ethanol production by Clostridium ragsdalei from syngas by incorporating biochar in the fermentation medium. Bioresour Technol 247:291–301

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Atiyeh HK, Kumar A, Zhang H, Tanner RS (2018b) Biochar enhanced ethanol and butanol production by Clostridium carboxidivorans from syngas. Bioresour Technol 265:128–138

    Article  CAS  PubMed  Google Scholar 

  • Survase SA, Jurgens G, Van Heiningen A, Granström T (2011) Continuous production of isopropanol and butanol using Clostridium beijerinckii DSM 6423. Appl Microbiol Biotechnol 91(5):1305–1313

    Article  CAS  PubMed  Google Scholar 

  • Tamaru Y, Miyake H, Kuroda K, Nakanishi A, Kawade Y, Yamamoto K, Uemura M, Fujita Y, Doi RH, Ueda M (2010) Genome sequence of the cellulosome-producing mesophilic organism Clostridium cellulovorans 743B. J Bacteriol 192(3):901–902

    Article  CAS  PubMed  Google Scholar 

  • Tanner RS, Miller LM, Yang D (1993) Clostridium ljungdahlii sp. nov., an acetogenic species in Clostridial rRNA homology group I. Int J Syst Bacteriol 43(2):232–236

    Article  CAS  PubMed  Google Scholar 

  • Tian L, Papanek B, Olson DG, Rydzak T, Holwerda EK, Zheng T, Zhou J, Maloney M, Jiang N, Giannone RJ, Hettich RL, Guss AM, Lynd LR (2016) Simultaneous achievement of high ethanol yield and titer in Clostridium thermocellum. Biotechnol Biofuels 9:116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian L, Perot SJ, Hon S, Zhou J, Liang X, Bouvier JT, Guss AM, Olson DG, Lynd LR (2017) Enhanced ethanol formation by Clostridium thermocellum via pyruvate decarboxylase. Microb Cell Factories 16:171

    Article  CAS  Google Scholar 

  • Tomas CA, Welker NE, Papoutsakis ET (2003) Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program. Appl Environ Microbiol 69(8):4951–4965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Hecke W, Vandezande P, Claes S, Vangeel S, Beckers H, Diels L, De Wever H (2012) Integrated bioprocess for long-term continuous cultivation of Clostridium acetobutylicum coupled to pervaporation with PDMS composite membranes. Bioresour Technol 111:368–377

    Article  CAS  PubMed  Google Scholar 

  • Van Hecke W, Hofmann T, De Wever H (2013) Pervaporative recovery of ABE during continuous cultivation: enhancement of performance. Bioresour Technol 129:421–429

    Article  CAS  PubMed  Google Scholar 

  • Ventura J-R, Hu H, Jahng D (2013) Enhanced butanol production in Clostridium acetobutylicum ATCC 824 by double overexpression of 6-phosphofructokinase and pyruvate kinase genes. Appl Microbiol Biotechnol 97(16):7505–7516

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Zhu Y, Zhang Y, Li Y (2012) Controlling the oxidoreduction potential of the culture of Clostridium acetobutylicum leads to an earlier initiation of solventogenesis, thus increasing solvent productivity. Appl Microbiol Biotechnol 93(3):1021–1030

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Yang X, Chen CC, Yang ST (2014a) Engineering clostridia for butanol production from biorenewable resources: from cells to process integration. Curr Opin Chem Eng 6:43–54

    Article  Google Scholar 

  • Wang L, Xia M, Zhang L, Chen H (2014b) Promotion of the Clostridium acetobutylicum ATCC 824 growth and acetone–butanol–ethanol fermentation by flavonoids. World J Microbiol Biotechnol 30(7):1969–1976

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhang Z-T, Seo S-O, Choi K, Lu T, Jin YS, Blaschek HP (2015a) Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system. J Biotechnol 200:1–5

    Article  CAS  PubMed  Google Scholar 

  • Wang ZY, Cao GL, Zheng J, Fu DF, Song JZ, Zhang JZ, Zhao L, Yang Q (2015b) Developing a mesophilic co-culture for direct conversion of cellulose to butanol in consolidated bioprocess. Biotechnol Biofuels 8:84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Xin F, Kong X, Zhao J, Dong W, Zhang W, Ma J, Wu H, Jiang M (2018) Enhanced isopropanol–butanol–ethanol mixture production through manipulation of intracellular NAD(P)H level in the recombinant Clostridium acetobutylicum XY16. Biotechnol Biofuels 11:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen Z, Wu MB, Lin YJ, Yang LR, Lin JP, Cen PL (2014a) Artificial symbiosis for acetone-butanol-ethanol (ABE) fermentation from alkali extracted deshelled corn cobs by co-culture of Clostridium beijerinckii and Clostridium cellulovorans. Microb Cell Factories 13:92

    Article  CAS  Google Scholar 

  • Wen Z, Wu MB, Lin YJ, Yang LR, Lin JP, Cen PL (2014b) A novel strategy for sequential co-culture of Clostridium thermocellum and Clostridium bezjerinckii to produce solvents from alkali extracted corn cobs. Process Biochem 49(11):1941–1949

    Article  CAS  Google Scholar 

  • Wen Z, Minton NP, Zhang Y, Li Q, Liu J, Jiang Y, Yang S (2017) Enhanced solvent production by metabolic engineering of a twin-clostridial consortium. Metab Eng 39:38–48

    Article  CAS  PubMed  Google Scholar 

  • Wen Z, Ledesma-Amaro R, Lin J, Jiang Y, Yang S (2019) Improved n-butanol production from Clostridium cellulovorans by integrated metabolic and evolutionary engineering. Appl Environ Microbiol. https://doi.org/10.1128/AEM.02560-18

  • Wischral D, Zhang J, Cheng C, Lin M, De SLMGM, Pessoa FLP, Pereira NJ, Yang ST (2016) Production of 1,3-propanediol by Clostridium beijerinckii DSM 791 from crude glycerol and corn steep liquor: process optimization and metabolic engineering. Bioresour Technol 212:100–110

    Article  CAS  PubMed  Google Scholar 

  • Woolston BM, Emerson DF, Currie DH, Stephanopoulos G (2018) Rediverting carbon flux in Clostridium ljungdahlii using CRISPR interference (CRISPRi). Metab Eng 48:243–253

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Chen X-PP, Liu G-PP, Jiang M, Guo T, Jin WQ, Wei P, Zhu DW (2012) Acetone-butanol-ethanol (ABE) fermentation using Clostridium acetobutylicum XY16 and in situ recovery by PDMS/ceramic composite membrane. Bioprocess Biosyst Eng 35(7):1057–1065

    Article  CAS  PubMed  Google Scholar 

  • Wu YD, Xue C, Chen LJ, Bai FW (2013) Effect of zinc supplementation on acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. J Biotechnol 165(1):18–21

    Article  CAS  PubMed  Google Scholar 

  • Wu H, He A, Kong X, Jiang M, Chen X, Zhu D, Liu G, Jin W (2015) Acetone-butanol-ethanol production using pH control strategy and immobilized cells in an integrated fermentation-pervaporation process. Process Biochem 50(4):614–622

    Article  CAS  Google Scholar 

  • Xiao H, Gu Y, Ning Y, Yang Y, Mitchell W, Jiang W, Yang S (2011) Confirmation and elimination of xylose metabolism bottlenecks in glucose phosphoenolpyruvate-dependent phosphotransferase system-deficient Clostridium acetobutylicum for simultaneous utilization of glucose, xylose, and arabinose. Appl Environ Microbiol 77(2):7886–7895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin FX, He JZ (2013) Characterization of a thermostable xylanase from a newly isolated Kluyvera species and its application for biobutanol production. Bioresour Technol 135:309–315

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Zhao J, Yu L, Tang IC, Xue C, Yang ST (2015) Engineering Clostridium acetobutylicum with a histidine kinase knockout for enhanced n-butanol tolerance and production. Appl Microbiol Biotechnol 99(2):1011–1022

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Zhao J, Yu L, Yang ST (2017) Comparative genomic analysis of Clostridium acetobutylicum for understanding the mutations contributing to enhanced butanol tolerance and production. J Biotechnol 263:36–44

    Article  CAS  PubMed  Google Scholar 

  • Xue C, Zhao J, Lu C, Yang ST, Bai F, Tang IC (2012) High-titer n-butanol production by Clostridium acetobutylicum JB200 in fed-batch fermentation with intermittent gas stripping. Biotechnol Bioeng 135:2746–2756

    Article  CAS  Google Scholar 

  • Xue C, Zhao X, Liu C, Chen L, Bai F (2013a) Prospective and development of butanol as an advanced biofuel. Biotechnol Adv 31(8):1575–1584

    Article  CAS  PubMed  Google Scholar 

  • Xue C, Zhao J, Liu F, Lu C, Yang ST, Bai F (2013b) Two-stage in situ gas stripping for enhanced butanol fermentation and energy-saving product recovery. Bioresour Technol 135:396–402

    Article  CAS  PubMed  Google Scholar 

  • Xue C, Du G, Sun J, Chen L, Gao S, Yu M, Yang ST, Bai F (2014) Characterization of gas stripping and its integration with acetone-butanol-ethanol fermentation for high-efficient butanol production and recovery. Biochem Eng J 83:55–61

    Article  CAS  Google Scholar 

  • Xue C, Liu F, Xu M, Zhao J, Chen L, Ren J, Bai F, Yang ST (2016) A novel in situ gas stripping-pervaporation process integrated with acetone-butanol-ethanol fermentation for hyper n-butanol production. Biotechnol Bioeng 113(1):120–129

    Article  CAS  PubMed  Google Scholar 

  • Xue C, Zhao J, Chen LJ, Yang ST, Bai F (2017) Recent advances and state-of-the-art strategies in strain and process engineering for biobutanol production by Clostridium acetobutylicum. Biotechnol Adv 35(2):310–322

    Article  CAS  PubMed  Google Scholar 

  • Yang ST, Zhao J (2013) Adaptive engineering of Clostridium for increased butanol production. US Patent 8(450):093

    Google Scholar 

  • Yang X, Xu M, Yang ST (2015) Metabolic and process engineering of Clostridium cellulovorans for biofuel production from cellulose. Metab Eng 32:39–48

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Xu M, Yang ST (2016a) Restriction modification system analysis and development of in vivo methylation for the transformation of Clostridium cellulovorans. Appl Microbiol Biot 100(5):2289–2299

    Article  CAS  Google Scholar 

  • Yang Y, Hoogewind A, Moon YH, Day D (2016b) Production of butanol and isopropanol with an immobilized Clostridium. Bioprocess Biosyst Eng 39(3):421–428

    Article  CAS  PubMed  Google Scholar 

  • Youn SH, Lee KM, Kim KY, Lee SM, Woo HM, Um Y (2016) Effective isopropanol–butanol (IB) fermentation with high butanol content using a newly isolated Clostridium sp. A1424. Biotechnol Biofuels 9:230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu EKC, Chan MKH, Saddler JN (1985) Butanol production from cellulosic substrates by sequential co-culture of Clostridium thermocellum and Clostridium acetobutylicum. Biotechnol Lett 7(7):509–514

    Article  CAS  Google Scholar 

  • Yu M, Zhang Y, Tang IC, Yang ST (2011) Metabolic engineering of Clostridium tyrobutyricum for n-butanol production. Metab Eng 13(4):373–382

    Article  CAS  PubMed  Google Scholar 

  • Yu M, Du Y, Jiang W, Chang WL, Yang ST, Tang IC (2012) Effects of different replicons in conjugative plasmids on transformation efficiency, plasmid stability, gene expression and n-butanol biosynthesis in Clostridium tyrobutyricum. Appl Microbiol Biotechnol 93(2):881–889

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Xu M, Tang IC, Yang ST (2015a) Metabolic engineering of Clostridium tyrobutyricum for n-butanol production through co-utilization of glucose and xylose. Biotechnol Bioeng 112(10):2134–2141

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Zhao J, Xu M, Dong J, Varghese S, Yu M, Tang IC, Yang ST (2015b) Metabolic engineering of Clostridium tyrobutyricum for n-butanol production: effects of CoA transferase. Appl Microbiol Biotechnol 99(11):4917–4930

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Taylor S, Wang Y (2016) Effects of end products on fermentation profiles in Clostridium carboxidivorans P7 for syngas fermentation. Bioresour Technol 218:1055–1063

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Yu L, Lin M, Yan Q, Yang ST (2017a) n-butanol production from sucrose and sugarcane juice by engineered Clostridium tyrobutyricum overexpressing sucrose catabolism genes and adhE2. Bioresour Technol 233:51–57

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Yu L, Xu M, Yang ST, Yan Q, Lin M, Tang IC (2017b) Metabolic engineering of Clostridium tyrobutyricum for n-butanol production from sugarcane juice. Appl Microbiol Biotechnol 101(10):4327–4237

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zong W, Hong W, Zhang ZT, Wang Y (2018a) Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production. Metab Eng 47:49–59

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Li T, He J (2018b) Characterization and genome analysis of a butanol-isopropanol-producing Clostridium beijerinckii strain BGS1. Biotechnol Biofuels 11:280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Hindorff LA, Chuang A, Monroe-Augustus M, Lyristis M, Harrison ML, Rudolph FB, Bennett GN (2003) Expression of a cloned cyclopropane fatty acid synthase gene reduces solvent formation in Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 69(5):2831–2841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Lu C, Chen CC, Yang ST (2013) Biological production of butanol and higher alcohols. In: Yang ST, El-Enshasy HA, Thongchul N (eds) Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals and polymers. Wiley, New York, pp 235–261

    Chapter  Google Scholar 

  • Zheng T, Cui J, Bae HR, Lynd LR, Olson DG (2017) Expression of adhA from different organisms in Clostridium thermocellum. Biotechnol Biofuels 10:251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu L, Dong H, Zhang Y, Li Y (2011) Engineering the robustness of Clostridium acetobutylicum by introducing glutathione biosynthetic capability. Metab Eng 13(4):426–434

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This material is based upon the work supported by the Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Bioenergy Technologies Office, Award Number DE-EE0007005.

Funding

This study was funded by the Department of Energy (Grant number: DE-EE0007005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shang-Tian Yang.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

All authors declare that they have no conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, C., Bao, T. & Yang, ST. Engineering Clostridium for improved solvent production: recent progress and perspective. Appl Microbiol Biotechnol 103, 5549–5566 (2019). https://doi.org/10.1007/s00253-019-09916-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-09916-7

Keywords

Navigation