Skip to main content
Log in

Recent achievements in the generation of stable genome alterations/mutations in species of the genus Streptomyces

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The bacteria of the genus Streptomyces are the most valuable source of natural products of industrial and medical importance. A recent explosion of Streptomyces genome sequence data has revealed the enormous genetic potential of new biologically active compounds, although many of them are silent under laboratory conditions. Efficient and stable manipulation of the genome is necessary to induce their production. Comprehensive studies in the past have led to a large and versatile collection of molecular biology tools for gene manipulation of Streptomyces, including various replicative plasmids. However, biotechnological applications of these bacteria require stable genome alterations/mutations. To accomplish such stable genome editing, two major strategies for streptomycetes have been developed: (1) integration into the chromosome through Att/Int site-specific integration systems based on Streptomyces actinophages (ΦC31, ΦBT1, VWB, TG1, SV1, R4, ΦJoe, μ1/6) or pSAM2 integrative plasmid; (2) integration by homologous recombination using suicidal non-replicating vectors. The present review is an attempt to provide a comprehensive summary of both approaches for stable genomic engineering and to outline recent advances in these strategies, such as CRISPR/Cas9, which have successfully manipulated Streptomyces strains to improve their biotechnological properties and increase production of natural or new gene-manipulated biologically active compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander DC, Rock J, He X, Miao V, Brian P, Baltz RH (2010) Development of a genetic system for combinatorial biosynthesis of lipopeptides in Streptomyces fradiae and heterologous expression of the A54145 biosynthetic gene cluster. Appl Environ Microbiol 76:6877–6887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anne J, Maldonado B, van Impe J, Mellart v, Bernaerts K (2012) Recombinant protein production and streptomycetes. J Biotech 158:159–167

    Article  CAS  Google Scholar 

  • Bachmann BO, van Lanen SG, Baltz RH (2014) Microbial genome mining for accelerated natural products discovery: is a renaissance in the making? J Ind Microbiol Biotechnol 41:175–184

    Article  CAS  PubMed  Google Scholar 

  • Bailey CR, Bruton CJ, Butler MJ, Chater KF, Harris JE, Hopwood DA (1986) properties of in vitro recombinant derivatives of pJV1, a multi-copy plasmid from Streptomyces phaeochromogenes. J Gen Microbiol 132:2071–2078

    CAS  PubMed  Google Scholar 

  • Baltz RH (1998) Genetic manipulation of antibiotic-producing Streptomyces. Trends Microbiol 6:76–83

    Article  CAS  PubMed  Google Scholar 

  • Baltz RH (2012) Streptomyces temperate bacteriophage integration systems for stable genetic engineering of actinomycetes (and other organisms). J Ind Microbiol Biotechnol 39:661–672

    Article  CAS  PubMed  Google Scholar 

  • Baltz RH (2016) Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes. J Ind Microbiol Biotechnol 43:343–370

    Article  CAS  PubMed  Google Scholar 

  • Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk H-P, Clément C, Ouhdouch Y, van Wezel GP (2016) Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev 80:1–43

    Article  PubMed  Google Scholar 

  • Bekiesch P, Basitta P, Apel AK (2016) Challenges in the heterologous production of antibiotics in Streptomyces. Arch Pharm Chem Life Sci 349:594–601

    Article  CAS  Google Scholar 

  • Bibb MJ, Freeman RF, Hopwood DA (1977) Physical and genetical characterization of a second sex factor, SCP2, for Streptomyces coelicolor A3(2). Mol Gen Genet 154:155–166

    Article  CAS  Google Scholar 

  • Bibb MJ, Ward JM, Hopwood DA (1978) Transformation of plasmid DNA into Streptomyces at high frequency. Nature 274:398–400

    Article  CAS  PubMed  Google Scholar 

  • Bierman M, Logan R, O’Brien K, Seno ET, Rao RN, Schoner BE (1992) Plasmid cloning vectors for conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49

    Article  CAS  PubMed  Google Scholar 

  • Bilyk O, Sekurova O, Zotchev SB, Luzhetskyy A (2016) Cloning and heterologous expression of the grecocycline biosynthetic gene cluster. PLoS One 11(7):e0158682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boccard F, Smokvina T, Pernodet JL, Friedmann A, Guérineau M (1989) The integrated conjugative plasmid pSAM2 of Streptomyces ambofaciens is related to temperate bacteriophages. EMBO J 8:973–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busche T, Novakova R, Al'Dilaimi A, Homerova D, Feckova L, Rezuchova B, Mingyar E, Csolleiova D, Bekeova C, Winkler A, Sevcikova B, Kalinowski J, Kormanec J, Rückert C (2018) Complete genome sequence of Streptomyces lavendulae subsp. lavendulae CCM 3239 (formerly “Streptomyces aureofaciens CCM 3239”), a producer of the angucycline-type antibiotic auricin. Genome Announc 6:e00103–e00118

    Article  PubMed  PubMed Central  Google Scholar 

  • Chater KF, Carter AT (1979) A new, broad host-range, temperate bacteriophage (R4) of Streptomyces and its interaction with some restriction-modification systems. J Gen Microbiol 115:431–442

    Article  Google Scholar 

  • Chen J, Wu Q, Hawas UW, Wang H (2016) Genetic regulation and manipulation for natural product discovery. Appl Microbiol Biotechnol 100:2953–2965

    Article  CAS  PubMed  Google Scholar 

  • Cobb RE, Wang Y, Zhao H (2015) High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 4:723–728

    Article  CAS  PubMed  Google Scholar 

  • Combes P, Till R, Bee S, Smith MCM (2002) The Streptomyces genome contains multiple pseudo-attB sites for the ΦC31-encoded site-specific recombination system. J Bacteriol 184:5746–5752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costes A, Lambert SAE (2013) Homologous recombination as a replication fork escort: fork-protection and recovery. Biomolecules 3:39–71

    Article  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng Y, Zhang X, Zhang Y (2017) Recent advances in genetic modification systems for Actinobacteria. Appl Microbiol Biotechnol 101:2217–2226

    Article  CAS  PubMed  Google Scholar 

  • Denis F, Brzezinski R (1992) A versatile shuttle cosmid vector for use in Escherichia coli and actinomycetes. Gene 111:115–118

    Article  CAS  PubMed  Google Scholar 

  • Dubeau MP, Ghinet MG, Jacques PE, Clermont N, Beaulieu C, Brzezinski R (2009) Cytosine deaminase as a negative selection marker for gene disruption and replacement in the genus Streptomyces and other Actinobacteria. Appl Environ Microbiol 75:1211–1214

    Article  CAS  PubMed  Google Scholar 

  • Dyson PJ (2011) Streptomyces: molecular biology and biotechnology. Caister Academic Press, Norfolk

    Google Scholar 

  • Farkasovska J, Godany A (2012) Analysis of the site-specific integration system of the Streptomyces aureofaciens phage μ1/6. Curr Microbiol 64:226–233

    Article  CAS  PubMed  Google Scholar 

  • Fayed B, Younger E, Taylor G, Smith MCM (2014) A novel Streptomyces spp. integration vector derived from the S. venezuelae phage, SV1. BMC Biotechnol 14:51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fayed B, Ashford DA, Hashem AM, Amin MA, El Gazayerly ON, Gregory MA, Smith MCM (2015) Multiplexed integrating plasmids for engineering of the erythromycin gene cluster for expression in Streptomyces spp. and combinatorial biosynthesis. Appl Environ Microbiol 81:8402–9413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fedoryshyn M, Petzke L, Welle E, Bechthold A, Luzhetskyy A (2008a) Marker removal from actinomycetes genome using Flp recombinase. Gene 419:43–47

    Article  CAS  PubMed  Google Scholar 

  • Fedoryshyn M, Welle E, Bechthold A, Luzhetskyy A (2008b) Functional expression of the Cre recombinase in actinomycetes. Appl Microbiol Biotechnol 78:1065–1070

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Martinez LT, Bibb MJ (2014) Use of the Meganuclease I-SceI of Saccharomyces cerevisiae to select for gene deletions in actinomycetes. Sci Rep 4:7100

    Article  PubMed  PubMed Central  Google Scholar 

  • Fogg PCM, Colloms S, Rosser S, Stark WM, Smith MCM (2014) New applications for phage integrases. J Mol Biol 426:2703–2716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fogg PCM, Haley JA, Stark WM, Smith MCM (2017) Genome integration and excision by a new Streptomyces bacteriophage, ΦJoe. Appl Environ Microbiol 83:e02767–e02716

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Quiñonez N, López-García MT, Yagüe P, Rioseras B, Pisciotta A, Alduina R, Manteca A (2016) New ΦBT1 site-specific integrative vectors with neutral phenotype in Streptomyces. Appl Microbiol Biotechnol 100:2797–2808

    Article  CAS  PubMed  Google Scholar 

  • Gregory MA, Till R, Smith MCM (2003) Integration site for Streptomyces phage FBT1 and development of site-speciWc integrating vectors. J Bacteriol 185:5320–5323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross H (2007) Strategies to unravel the function of orphan biosynthesis pathways: recent examples and future prospects. Appl Microbiol Biotechnol 75:267–277

    Article  CAS  PubMed  Google Scholar 

  • Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the esquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 18:1541–1548

    Article  CAS  Google Scholar 

  • Hamed MB, Anne J, Karamanou S, Economou A (2018) Streptomyces protein secretion and its application in biotechnology. FEMS Microbiol Lett 265:fny250

    Google Scholar 

  • Hermann S, Siegl T, Luzhetska M, Petzke L, Jilg C, Welle E, Erb A, Leadlay PF Bechthold A, Luzhetskyy A (2012) Site-specific recombination strategies for engineering actinomycete genomes. Appl Environ Microbiol 78:1804–1812

    Article  CAS  Google Scholar 

  • Hopwood DA (2007) Streptomyces in nature and mecicine. The antibiotic makers. Oxford University Press, New York

    Google Scholar 

  • Hosted TJ, Baltz RH (1997) Use of rpsL for dominance selection and gene replacement in Streptomyces roseosporus. J Bacteriol 179:180–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hover BM, Kim S-H, Katz M, Charlop-Powers Z, Owen JG, Ternei MA, Maniko J, Estrela A, Molina H, Park S, Perlin DS, Brady SF (2018) Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant Gram-positive pathogens. Nat Microbiol 3:415–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Zheng G, Jiang W, Hu H, Lu Y (2015) One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim Biophys Sin 47:231–243

    Article  CAS  PubMed  Google Scholar 

  • Huo L, Hug JJ, Fu C, Bian X, Zhang Y, Muller R (2019) Heterologous expression of bacterial natural product biosynthetic pathways. Nat Prod Rep. https://doi.org/10.1039/c8np00091c

  • Jiang W, Zhao X, Gabrieli T, Lou C, Ebenstein Y, Zhu TF (2015) Cas9-assisted targeting of chromosome segments CATCH enables one-step targeted cloning of large gene clusters. Nat Commun 6:8101

    Article  PubMed  Google Scholar 

  • Khaleel T, Younger E, McEwan AR, Varghese AS, Smith MCM (2011) A phage protein that binds ΦC31 integrase to switch its directionality. Mol Microbiol 80:1450–1463

    Article  CAS  PubMed  Google Scholar 

  • Kieser T, Hopwood DA, Wright HM, Thompson CJ (1982) pIJ101, a multi-copy broad host-range Streptomyces plasmid: functional analysis and development of DNA cloning vectors. Mol Gen Genet 186:223–228

    Article  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich

    Google Scholar 

  • Kim JH, Feng Z, Bauer JD, Kallifidas D, Cale PY, Brady SF (2010) Cloning large natural product gene clusters from the environment: piecing environmental DNA gene clusters back together with TAR. Biopolymers 93:833–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knirschova R, Novakova R, Mingyar E, Bekeova C, Homerova D, Kormanec J (2015) Utilization of a reporter system based on the blue pigment indigoidine biosynthetic gene bpsA for detection of promoter activity and deletion of genes in Streptomyces. J Microbiol Methods 113:1–3

    Article  CAS  PubMed  Google Scholar 

  • Kormanec J, Rezuchova B, Farkasovsky M (1993) Optimization of Streptomyces aureofaciens transformation and disruption of the hrdA gene encoding a homologue of the principal sigma factor. J Gen Microbiol 139:2525–2529

    Article  CAS  Google Scholar 

  • Kuhstoss S, Richardson MA, Rao RN (1989) Site-specific integration in Streptomyces ambofaciens: localization of integration functions in S. ambofaciens plasmid pSAM2. J Bacteriol 171:16–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhstoss S, Richardson MA, Rao RN (1991) Plasmid cloning vectors that integrate site-specifically in Streptomyces spp. Gene 97:143–146

    Article  CAS  PubMed  Google Scholar 

  • Lee NC, Larionov V, Kouprina N (2015) Highly efficient CRISPR/Cas9-mediated TAR cloning of genes and chromosomal loci from complex genomes in yeast. Nucleic Acids Res 43:e55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Li J, Guo Z, Tang W, han J, meng X, Hao T, Zhu Y, Zhang L, Chen Y (2015) An efficient blue-white screening based gene inactivation system for Streptomyces. Appl Microbiol Biotechol 99:1923–1933

    Article  CAS  Google Scholar 

  • Li L, Zheng G, Chen J, Ge M, Jiang W, Lu Y (2017a) Multiplexed site-specific genome engineering for overproducing bioactive secondary metabolites in actinomycetes. Metab Eng 40:80–92

    Article  CAS  PubMed  Google Scholar 

  • Li L, Jiang W, Lu Y (2017b) New strategies and approaches for engineering biosynthetic gene clusters of microbial natural products. Biotechnol Adv 35:936–949

    Article  CAS  PubMed  Google Scholar 

  • Li L, Wei K, Liu X, Wu Y, Zheng G, Chen S, Jiang W, Lu Y (2019) aMSGE: advanced multiplex site-specific genome engineering with orthogonal modular recombinases in actinomycetes. Metab Eng 52:153–167

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Jiang H, Haltli B, Kulowski K, Muszynska E, Feng X, Summers M, Young M, Graziani E, Koehn F, Carter GT, He M (2009) Rapid cloning and heterologous expression of the meridamycin biosynthetic gene cluster using a versatile Escherichia coli-Streptomyces artificial chromosome vector, pSBAC. J Nat Prod 72:389–395

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Deng Z, Liu T (2018) Streptomyces species: ideal chassis for natural product discovery and overproduction. Metab Eng 50:74–84

    Article  CAS  PubMed  Google Scholar 

  • Lomovskaya ND, Mkrtumian N, Gostimskaya NL, Danilenko VN (1972) Characterization of temperate actinophage ΦC31 isolated from Streptomyces coelicolor A3(2). J Virol 9:258–262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lomovskaya ND, Chater KF, Mkrtumian N (1980) Genetics and molecular biology of Streptomyces bacteriophages. Microbiol Rev 44:206–229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manderscheid N, Bilyk B, Busche T, Kalinowski J, Paululat T, Bechthold A, Petzke L, Luzhetskyy A (2016) An influence of the copy number of biosynthetic gene clusters on the production level of antibiotics in a heterologous host. J Biotech 323:110–117

    Article  CAS  Google Scholar 

  • Matsuura M, Noguchi T, Yamaguchi D, Aida T, Asayama M, Takahashi H, Shirai M (1996) The sre gene (ORF469) encodes a site-specific recombinase responsible for integration of the R4 phage genome. J Bacteriol 178:3374–3376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazodier P, Petter R, Thompson C (1989) Intergenic conjugation between Escherichia coli and Streptomyces species. J Bacteriol 171:3583–3585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miura T, Hosaka Y, Yan-Zhuo Y, Nishizawa T, Asayama M, Takahashi H, Shirai M (2011) In vivo and in vitro characterization of site specific recombination of actinophage R4 integrase. J Gen Appl Microbiol 57:45–57

    Article  CAS  PubMed  Google Scholar 

  • Miura T, Nishizawa A, Nishizawa T, Asayama M, Takahashi H, Shirai M (2014) Construction of a stepwise gene integration system by transient expression of actinophage R4 integrase in cyanobacterium Synechocystis sp. PCC 6803. Mol Gen Genomics 289:615–623

    Article  CAS  Google Scholar 

  • Morita K, Yamamoto T, Fusada N, Komatsu M, Ikeda H, Hirano N, Takahashi H (2009) The site-specific recombination system of actinophage TG1. FEMS Microbiol Lett 297:234–240

    Article  CAS  PubMed  Google Scholar 

  • Muth G, Nussbaumer B, Wohlleben W, Puhler A (1989) A vector system with temperature-sensitive replication for gene disruption and mutational cloning in streptomycetes. Mol Gen Genet 219:341–348

    Article  CAS  Google Scholar 

  • Myronovskyi M, Luzhetskyy A (2013) Genome engineering in actinomycetes using site-specific recombinases. Appl Microbiol Biotechnol 97:4701–4712

    Article  CAS  PubMed  Google Scholar 

  • Myronovskyi M, Rosenkranzer B, Luzhetskyy A (2014) Iterative marker excision system. Appl Microbiol Biotechnol 98:4557–4570

    Article  CAS  PubMed  Google Scholar 

  • Myronovskyi M, Rosenkranzer B, Nadmid S, Pujic P, Normand P, Luzhetskyy A (2018) Generation of a cluster-free Streptomyces albus chassis strains for improved heterologous expression of secondary metabolite clusters. Metab Eng 49:316–324

    Article  CAS  PubMed  Google Scholar 

  • Nah H-J, Pyeon H-R, Kang S-H, Choi S-S, Kim E-S (2017) Cloning and heterologous expression of a large-sized natural product biosynthetic gene cluster in Streptomyces species. Front Microbiol 8:394

    Article  PubMed  PubMed Central  Google Scholar 

  • Novakova R, Rehakova A, Feckova L, Kutas P, Knirschova R, Kormanec J (2011) Genetic manipulation of pathway regulation for overproduction of angucycline-like antibiotic auricin in Streptomyces aureofaciens CCM 3239. Folia Microbiol 56:276–282

    Article  CAS  Google Scholar 

  • Novakova R, Núñez LE, Homerova D, Knirschova R, Feckova L, Rezuchova B, Sevcikova B, Menéndez N, Morís F, Cortés J, Kormanec J (2018) Increased heterologous production of the antitumoral polyketide mithramycin A by Engineered Streptomyces lividans TK24 Strains. Appl Microbiol Biotechnol 102:857–869

    Article  CAS  PubMed  Google Scholar 

  • Okanishi M, Suzuki K, Umezawa H (1974) Formation and reversion of streptomycete protoplasts: cultural conditions and morphological study. J Gen Microbiol 80:389–400

    Article  CAS  PubMed  Google Scholar 

  • Olivares EC, Hollis RP, Calos MP (2001) Phage R4 integrase mediates site-specific integration in human cells. Gene 278:167–176

    Article  CAS  PubMed  Google Scholar 

  • Pigac J, Schrempf H (1995) A simple and rapid method of transformation of Streptomyces rimosus R6 and other streptomycetes by electroporation. Appl Environ Microbiol 61:352–356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raynal A, Tuphile K, Gerbaud C, Luther T, Guerineau M, Pernodet JL (1998) Structure of the chromosomal insertion site for pSAM2: functional analysis in Escherichia coli. Mol Microbiol 28:333–342

    Article  CAS  PubMed  Google Scholar 

  • Raynal A, Friedmann A, Tuphile K, Guerineau M, Pernodet JL (2002) Characterisation of the attP site of the integrative element pSAM2 from Streptomyces ambofaciens. Microbiology 148:61–67

    Article  CAS  PubMed  Google Scholar 

  • Rebets Y, Kormanec J, Lutzhetskyy A, Bernaerts K, Anné J (2017) Cloning and expression of metagenomic DNA in Streptomyces lividans and subsequent fermentation for optimized production. In: Streit W, Daniel R (eds) Metagenomics. Methods and protocols. Methods in Molecular Biology, vol 1539. Springer, New York, pp 99–144

    Chapter  Google Scholar 

  • Rezuchova B, Homerova D, Sevcikova B, Núñez LE, Novakova R, Feckova L, Skultety L, Cortés J, Kormanec J (2018) An efficient blue-white screening system for markerless deletions and stable integrations in Streptomyces chromosomes based on the blue pigment indigoidine biosynthetic gene bpsA. Appl Microbiol Biotechnol 102:10231–10244

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez E, Ward S, Fu H, Revill WP, McDaniel R, Katz L (2004) Engineered biosynthesis of 16-membered macrolides that require methoxymalonyl-ACP precursors in Streptomyces fradiae. Appl Microbiol Biotechnol 66:85–91

    Article  CAS  PubMed  Google Scholar 

  • Sekurova ON, Brautaset T, Sletta H, Borgos SE, Jakobsen MØM, Ellingsen TE, Strøm AR, Valla S, Zotchev SB (2004) In vivo analysis of the regulatory genes in the nystatin biosynthetic gene cluster of Streptomyces noursei ATCC 11455 reveals their differential control over antibiotic biosynthesis. J Bacteriol 186:1345–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selle K, Barrangou R (2015) Harnessing CRISPR–Cas systems for bacterial genome editing. Trends Microbiol 23:225–232

    Article  CAS  PubMed  Google Scholar 

  • Sezonov G, Duchêne AM, Friedmann A, Guérineau M, Pernodet JL (1998) Replicase, excisionase, and integrase genes of the Streptomyces element pSAM2 constitute an operon positively regulated by the pra gene. J Bacteriol 180:3056–3061

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siegl T, Luzhetskyy A (2012) Actinomycetes genome engineering approaches. Antonie Van Leeuwenhoek 102:503–516

    Article  CAS  PubMed  Google Scholar 

  • Siegl T, Petzke L, Welle E, Luzhetskyy A (2010) I-SceI endonuclease: a new tool for DNA repair studies and genetic manipulations in streptomycetes. App Microbiol Biotechnol 87:1525–1532

    Article  CAS  Google Scholar 

  • Smokvina T, Mazodier P, Boccard F, Thompson CJ, Guérineau M (1990) Construction of a series of pSAM2-based integrative vectors for use in actinomycetes. Gene 94(1):53–59

    Article  CAS  PubMed  Google Scholar 

  • Spasic J, Mandic M, Djokic L, Nikodinovic-Runic J (2018) Streptomyces spp. in the biocatalytic toolbox. Appl Microbiol Biotechnol 102:3513–3536

    Article  CAS  PubMed  Google Scholar 

  • Tala A, Damianoa F, Gallo G, Pinatel E, Calcagnile M, Testini M, Fico D, Rizzo D, Sutera A, Renzone G, Scaloni A, De Bellis G, Siculella L, De Benedetto GE, Puglia AM, Peano C, Alifano P (2018) Pirin: a novel redox-sensitive modulator of primary and secondary metabolism in Streptomyces. Metab Eng 48:254–268

    Article  CAS  PubMed  Google Scholar 

  • Tao W, Yang A, Deng Z, Sun Y (2018) CRISPR/Cas9-based editing of Streptomyces for discovery, characterization, and production of natural products. Front Microbiol 9:1660

    Article  PubMed  PubMed Central  Google Scholar 

  • Tocchetti A, Donadio S, Sossio M (2018) Large inserts for big data: artificial chromosomes in the genomic era. FEMS Microbiol Lett 365:fny064

    Article  CAS  Google Scholar 

  • Tong Y, Charusanti P, Zhang L, Weber T, Lee SY (2015) CRISPR/Cas-based engineering of actinomycetal genomes. ACS Synth Biol 4:1020–1029

    Article  CAS  PubMed  Google Scholar 

  • Tong Y, Weber T, Lee SY (2018) CRISPR/Cas-based genome engineering in natural product discovery. Nat Prod Rep. https://doi.org/10.1039/c8np00089a

  • Van Mellaert L, Mei L, Lammertyn E, Schacht S, Anne J (1998) Site-speciWc integration of bacteriophage VWB genome into Streptomyces venezuelae and construction of a VWB-based integrative vector. Microbiology 144:3351–3358

    Article  PubMed  Google Scholar 

  • Van Wezel GP, Bibb MJ (1996) A novel plasmid vector that uses the glucose kinase gene (glkA) for the positive selection of stable gene disruptants in Streptomyces. Gene 182:229–230

    Article  PubMed  Google Scholar 

  • Wang JW, Wang A, Li K, Wang B, Jin S, Reiser M, Lockey RF (2015) CRISPR/Cas9 nuclease cleavage combined with Gibson assembly for seamless cloning. Biotechniques 58:161–170

    Article  CAS  PubMed  Google Scholar 

  • Wright WD, Shan SS, Heyer WD (2018) Homologous recombination and the repair of DNA double-strand breaks. J Biol Chem 293:10524–10535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng H, Wen S, Xu W, He Z, Zhai G, Liu Y, Deng Z, Sun Y (2015) Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system. Appl Microbiol Biotechnol 99:10575–10585

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Ou X, Zhao G, Ding X (2008) Highly efficient in vitro site-specific recombination system based on the Streptomyces phage ΦBT1 integrase. J Bacteriol 190:6392–6397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang MM, Wong FT, Wang Y, Luo S, Lim YH, Heng E, Yao WL, Cobb RE, Enghiad B, Ang EL, Zhao H (2017) CRISPR-Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat Chem Biol 13:607–609

    Article  CAS  Google Scholar 

  • Zheng JT, Wang SL, Yang KQ (2007) Engineering a regulatory region of jadomycin gene cluster to improve jadomycin B production in Streptomyces venezuelae. Appl Microbiol Biotechnol 76:883–888

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Slovak Research and Development Agency under contract No. APVV-15-0410 and by the VEGA grant 2/0002/16 from the Slovak Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kormanec.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kormanec, J., Rezuchova, B., Homerova, D. et al. Recent achievements in the generation of stable genome alterations/mutations in species of the genus Streptomyces. Appl Microbiol Biotechnol 103, 5463–5482 (2019). https://doi.org/10.1007/s00253-019-09901-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-09901-0

Keywords