Skip to main content
Log in

Riboregulator elements as tools to engineer gene expression in cyanobacteria

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cyanobacteria are an ideal host for biofuel production. Although efforts have been made to genetically engineer cyanobacteria for efficient production of biofuels and other important chemicals, the tools that can be applied to cyanobacteria are still limited. A new gene regulation tool, riboregulator, has been examined for application in cyanobacteria. A riboregulator is a nature-inspired RNA tool, which is composed of two artificially designed RNA fragments. Owing to its high specificity and efficacy, it is suitable for metabolic engineering in cyanobacteria, and several studies have been done to optimize and improve the function of the riboregulator. In this review, we focus on the recent improvements made to riboregulators and compare them with other RNA-mediated gene regulation tools developed in cyanobacteria to investigate future applications of riboregulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe K, Sakai Y, Nakashima S, Araki M, Yoshida W, Sode K, Ikebukuro K (2014) Design of riboregulators for control of cyanobacterial (Synechocystis) protein expression. Biotechnol Lett 36:287–294

    Article  PubMed  CAS  Google Scholar 

  • Aït-Bara S, Carpousis AJ (2015) RNA degradosomes in bacteria and chloroplasts: classification, distribution and evolution of RNase E homologs. Mol Microbiol 97:1021–1135

    Article  PubMed  CAS  Google Scholar 

  • Anders C, Niewoehner O, Duerst A, Jinek M (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513(7519):569–573

  • Ben Jehuda R, Shemer Y, Binah O (2018) Genome editing in induced pluripotent stem cells using CRISPR/Cas9. Stem Cell Rev 14:323–336. https://doi.org/10.1007/s12015-018-9811-3

    Article  PubMed  CAS  Google Scholar 

  • Bøggild A, Overgaard M, Valentin-Hansen P, Brodersen DE (2009) Cyanobacteria contain a structural homologue of the Hfq protein with altered RNA-binding properties. FEBS J 276:3904–3915

    Article  PubMed  CAS  Google Scholar 

  • Brennan RG, Link TM (2007) Hfq structure, function and ligand binding. Curr Opin Microbiol 10:125–133

    Article  PubMed  CAS  Google Scholar 

  • Camsund D, Lindblad P (2014) Engineered transcriptional systems for cyanobacterial biotechnology. Front Bioeng Biotechnol 2:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 3:294–306

    Article  CAS  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Connor MR, Atsumi S (2010) Synthetic biology guides biofuel production. Biomed Biotechnol 2010:1–9. https://doi.org/10.1155/2010/541698

    Article  CAS  Google Scholar 

  • Dienst D, Dühring U, Mollenkopf HJ, Vogel J, Golecki J, Hess WR, Wilde A (2008) The cyanobacterial homologue of the RNA chaperone Hfq is essential for motility of Synechocystis sp. PCC 6803. Microbiology 154:3134–3143

    Article  PubMed  CAS  Google Scholar 

  • Fischer S, Maier LK, Stoll B, Brendel J, Fischer E, Pfeiffer F, Dyall-Smith M, Marchfelder A (2012) An archaeal immune system can detect multiple protospacer adjacent motifs (PAMs) to target invader DNA. J Biol Chem 287:33351–33363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Folichon M, Arluison V, Pellegrini O, Huntzinger E, Régnier P, Hajnsdorf E (2003) The poly(a) binding protein Hfq protects RNA from RNase E and exoribonucleolytic degradation. Nucleic Acids Res 31:7302–7310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gordon GC, Korosh TC, Cameron JC, Markley AL, Begemann MB, Pfleger BF (2016) CRISPR interference as a titratable, trans-acting regulatory tool for metabolic engineering in the cyanobacterium Synechococcus sp. strain PCC 7002. Metab Eng 38:170–179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heidorn T, Camsund D, HuangHH LP, Oliveira P, Stensjö K, Lindblad P (2011) Synthetic biology in cyanobacteria engineering and analyzing novel functions. Methods Enzymol 497:539–579

    Article  PubMed  CAS  Google Scholar 

  • Hess WR, Berghoff BA, Wilde A, Steglich C, Klug G (2014) Riboregulators and the role of Hfq in photosynthetic bacteria. RNA Biol 11:413–426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hjalt TA, Wagner EG (1995) Bulged-out nucleotides protect an antisense RNA from RNase III cleavage. Nucleic Acids Res 23:571–579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang HH, Camsund D, Lindblad P, Heidorn T (2010) Design and characterization of molecular tools for a synthetic biology approach towards developing cyanobacterial biotechnology. Nucleic Acids Res 38:2577–2593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Isaacs FJ, Dwyer DJ, Ding C, Pervouchine DD, Cantor CR, Collins JJ (2004) Engineered riboregulators enable post-transcriptional control of gene expression. Nat Biotechnol 22:841–847

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S (2015) Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol 81:2506–2514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaczmarzyk D, Cengic I, Yao L, Hudson EP (2018) Diversion of the long-chain acyl-ACP pool in Synechocystis to fatty alcohols through CRISPRi repression of the essential phosphate acyltransferase PlsX. Metab Eng 45:59–66

    Article  PubMed  CAS  Google Scholar 

  • Kaniya Y, Kizawa A, Miyagi A, Kawai-Yamada M, Uchimiya H, Kaneko Y, Nishiyama Y, Hihara Y (2013) Deletion of the transcriptional regulator cyAbrB2 deregulates primary carbon metabolism in Synechocystis sp. PCC 6803. Plant Physiol 162:1153–1163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keefer AB, Asare EK, Pomerantsev AP, Moayeri M, Martens C, Porcella SF, Gottesman S, Leppla SH, Vrentas CE (2017) In vivo characterization of an Hfq protein encoded by the Bacillus anthracis virulence plasmid pXO1. BMC Microbiol 17:63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan MI, Shin JH, Kim JD (2018) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Factories 17:36. https://doi.org/10.1186/s12934-018-0879-x

    Article  Google Scholar 

  • Krishnamurthy M, Hennelly SP, Dale T, Starkenburg SR, Martí-Arbona R, Fox DT, Twary SN, Sanbonmatsu KY, Unkefer CJ (2015) Tunable riboregulator switches for post-transcriptional control of gene expression. ACS Synth Biol 4:1326–1334

    Article  PubMed  CAS  Google Scholar 

  • Lau NS, Matsui M, Abdullah AA (2015) Cyanobacteria: photoautotrophic microbial factories for the sustainable synthesis of industrial products. Biomed Res Int 2015:754934–754939. https://doi.org/10.1155/2015/754934

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lease RA, Woodson SA (2004) Cycling of the Sm-like protein Hfq on the DsrA small regulatory RNA. J Mol Biol 344:1211–1223

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Lin Z, Huang C, Zhang Y, Wang Z, Tang YJ, Chen T, Zhao X (2015) Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing. Metab Eng 31:13–21

    Article  PubMed  CAS  Google Scholar 

  • Li H, Shen CR, Huang CH, Sung LY, Wu MY, Hu YC (2016) CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production. Metab Eng 38:293–302

    Article  PubMed  CAS  Google Scholar 

  • Link TM, Valentin-Hansen P, Brennan RG (2009) Structure of Escherichia coli Hfq bound to polyriboadenylate RNA. Proc Natl Acad Sci U S A 106:19292–19297

    Article  PubMed  PubMed Central  Google Scholar 

  • López-Maury L, García-Domínguez M, Florencio FJ, Reyes JC (2002) A two-component signal transduction system involved in nickel sensing in the cyanobacterium Synechocystis sp. PCC 6803. Mol Microbiol 43:247–256

    Article  PubMed  Google Scholar 

  • Lopez-Sanchez MJ, Sauvage E, Da Cunha V, Clermont D, Ratsima Hariniaina E, Gonzalez-Zorn B, Poyart C, Rosinski-Chupin I, Glaser P (2012) The highly dynamic CRISPR1 system of Streptococcus agalactiae controls the diversity of its mobilome. Mol Microbiol 85:1057–1071

    Article  PubMed  CAS  Google Scholar 

  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norvile JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Man S, Cheng R, Miao C, Gong Q, Gu Y, Lu X, Han F, Yu W (2011) Artificial trans-encoded small non-coding RNAs specifically silence the selected gene expression in bacteria. Nucleic Acids Res 39:50. https://doi.org/10.1093/nar/gkr034

    Article  CAS  Google Scholar 

  • Massé E, Escorcia FE, Gottesman S (2003) Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev 17:2374–2383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mazard S, Penesyan A, Ostrowski M, Paulsen IT, Egan S (2016) Tiny microbes with a big impact: the role of cyanobacteria and their metabolites in shaping our future. Mar Drugs 14:5. https://doi.org/10.3390/md14050097

    Article  CAS  Google Scholar 

  • Moll I, Afonyushkin T, Vytvytska O, Kaberdin VR, Bläsi U (2003) Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulatory RNAs. RNA 9:1308–1314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Møller T, Franch T, Højrup P, Keene DR, Bächinger HP, Brennan RG, Valentin-Hansen P (2002) Hfq: a bacterial Sm-like protein that mediates RNA-RNA interaction. Mol Cell 9:23–30

    Article  PubMed  Google Scholar 

  • Na D, Yoo SM, Chung H, Park H, Park JH, Lee SY (2013) Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat Biotechnol 31:170–174

    Article  PubMed  CAS  Google Scholar 

  • Nakahira Y, Ogawa A, Asano H, Oyama T, Tozawa Y (2013) Theophylline-dependent riboswitch as a novel genetic tool for strict regulation of protein expression in cyanobacterium Synechococcus elongatus PCC 7942. Plant Cell Physiol 54:1724–1735

    Article  PubMed  CAS  Google Scholar 

  • O’Geen H, Yu AS, Segal DJ (2015) How specific is CRISPR/Cas9 really? Curr Opin Chem Biol 29:72–78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oh YK, Hwang KR, Kim C, Kim JR, Lee JS (2018) Recent developments and key barriers to advanced biofuels: a short review. Bioresour Technol 257:320–333

    Article  PubMed  CAS  Google Scholar 

  • Pellagatti A, Dolatshad H, Valletta S, Boultwood J (2015) Application of CRISPR/Cas9 genome editing to the study and treatment of disease. Arch Toxicol 89:1023–1034

    Article  PubMed  CAS  Google Scholar 

  • Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quintana N, Van der Kooy F, Van de Rhee MD, Voshol GP, Verpoorte R (2011) Renewable energy from cyanobacteria: energy production optimization by metabolic pathway engineering. Appl Microbiol Biotechnol 91:471–490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  PubMed  CAS  Google Scholar 

  • Sakai Y, Abe K, Nakashima S, Yoshida W, Ferri S, Sode K, Ikebukuro K (2014) Improving the gene-regulation ability of small RNAs by scaffold engineering in Escherichia coli. ACS Synth Biol 3:152–162

    Article  PubMed  CAS  Google Scholar 

  • Sakai Y, Abe K, Nakashima S, Ellinger JJ, Ferri S, Sode K, Ikebukuro K (2015) Scaffold-fused riboregulators for enhanced gene activation in Synechocystis sp. PCC 6803. Microbiologyopen 4:533–540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakamoto I, Abe K, Kawai S, Tsukakoshi K, Sakai Y, Sode K, Ikebukuro K (2018) Improving the induction fold of riboregulators for cyanobacteria. RNA Biol 5:1–6

    Google Scholar 

  • Sharma V, Yamamura A, Yokobayashi Y (2012) Engineering artificial small RNAs for conditional gene silencing in Escherichia coli. ACS Synth Biol 1:6–13

    Article  PubMed  CAS  Google Scholar 

  • Soper TJ, Woodson SA (2008) The rpoS mRNA leader recruits Hfq to facilitate annealing with DsrA sRNA. RNA 14:1907–1917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soper TJ, Mandin P, Majdalani N, Gottesman S, Woodson SA (2010) Positive regulation by small RNAs and the role of Hfq. Proc Natl Acad Sci U S A 107:9602–9607

    Article  PubMed  PubMed Central  Google Scholar 

  • Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507(7490):62–67

  • Sun X, Zhulin I, Wartell RM (2002) Predicted structure and phyletic distribution of the RNA-binding protein Hfq. Nucleic Acids Res 30:3662–3671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tasan I, Zhao H (2017) Targeting specificity of the CRISPR/Cas9 system. ACS Synth Biol 6:1609–1613

    Article  PubMed  CAS  Google Scholar 

  • Taton A, Ma AT, Ota M, Golden SS, Golden JW (2017) NOT gate genetic circuits to control gene expression in cyanobacteria. ACS Synth Biol 6:2175–2182

    Article  PubMed  CAS  Google Scholar 

  • Ueno K, Sakai Y, Shono C, Sakamoto I, Tsukakoshi K, Hihara Y, Sode K, Ikebukuro K (2017) Applying a riboregulator as a new chromosomal gene regulation tool for higher glycogen production in Synechocystis sp. PCC 6803. Appl Microbiol Biotechnol 101:8465–8474

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Wang J, Zhang W, Meldrum DR (2012) Application of synthetic biology in cyanobacteria and algae. Front Microbiol 3:344. https://doi.org/10.3389/fmicb.2012.00344

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Wang H, Yang L, Lv L, Zhang Z, Ren B, Dong L, Li N (2018) A novel riboregulator switch system of gene expression for enhanced microbial production of succinic acid. J Ind Microbiol Biotechnol 45:253–269

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Kriz AJ, Sharp PA (2014) Target specificity of the CRISPR-Cas9 system. Quant Biol 2:59–70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamauchi Y, Kaniya Y, Kaneko Y, Hihara Y (2011) Physiological roles of the cyAbrB transcriptional regulator pair Sll0822 and Sll0359 in Synechocystis sp. strain PCC 6803. J Bacteriol 193:3702–3709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yao L, Cengic I, Anfelt J, Hudson EP (2016) Multiple gene repression in cyanobacteria using CRISPRi. ACS Synth Biol 5:207–212

    Article  PubMed  CAS  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported financially by the Core Research of Evolutional Science & Technology program (CREST) from the Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunori Ikebukuro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All experiments were performed according to applicable national and institutional guidelines for the use of microorganisms.

Consent of publication

All authors approved the final version of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ueno, K., Tsukakoshi, K. & Ikebukuro, K. Riboregulator elements as tools to engineer gene expression in cyanobacteria. Appl Microbiol Biotechnol 102, 7717–7723 (2018). https://doi.org/10.1007/s00253-018-9221-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9221-0

Keywords

Navigation