Skip to main content
Log in

Biocatalytic versatility of engineered and wild-type tyrosinase from R. solanacearum for the synthesis of 4-halocatechols

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

We evaluated the kinetic characteristics of wild type (WT) and three engineered variants (RVC10, RV145, and C10_N322S) of tyrosinase from Ralstonia solanacearum and their potential as biocatalysts to produce halogenated catechols. RV145 exhibited a 3.6- to 14.5-fold improvement in catalytic efficiency (kcat/Km) with both reductions in Km and increases in kcat compared to WT, making it the best R. solanacearum tyrosinase variant towards halogenated phenols. RVC10 also exhibited increases in catalytic efficiency with all the tested phenols. A single-mutation variant (C10_N322S) exhibited the greatest improvement in kcat but lowest improvement in catalytic efficiency due to an increase in Km compared to WT. Consistent with kinetic characteristics, biotransformation experiments showed that RV145 was a superior biocatalyst in comparison to WT. To prevent through conversion of the catechol to quinone, ascorbic acid (AA) was added to the biotransformation medium in 1:2 (substrate:AA) ratio resulting in a catechol yield of > 90%. Flask experiments with 10 mM 4-iodophenol and 10 μg/mL of the RV145 enzyme yielded 9.5 mM 4-iodocatechol in the presence of 20 mM AA in 30 min. Similarly, 10 mM 4-fluorophenol was completely consumed by 20 μg/mL of RV145 enzyme and yielded 9.2 mM 4-fluorocatechol in the presence of 20 mM AA in 80 min. The biotransformation of 20 mM 4-fluorphenol was incomplete (93%) and the yield of 4-flurocatechol was 87.5%. The 4-halophenol conversion rates and product yields obtained in this study are the highest reported using tyrosinase or any other enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ates S, Cortenlioglu E, Bayraktar E, Mehmetoglu U (2007) Production of L-DOPA using Cu-alginate gel immobilized tyrosinase in a batch and packed bed reactor. Enzym Microb Technol 40:683–687

    Article  CAS  Google Scholar 

  • Baruah P, Swain T (1953) The effect of L-ascorbic acid on the in vitro activity of polyphenoloxidase from potato. Biochem J 55:392–399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Battaini G, Monzani E, Casella L, Lonardi E, Tepper AW, Canters GW, Bubacco L (2002) Tyrosinase-catalyzed oxidation of fluorophenols. J Biol Chem 277:44606–44612

    Article  PubMed  CAS  Google Scholar 

  • Ben-Yosef VS, Sendovski M, Fishman A (2010) Directed evolution of tyrosinase for enhanced monophenolase/diphenolase activity ratio. Enzym Microb Technol 47:372–376

    Article  CAS  Google Scholar 

  • Brooks SJ, Doyle EM, Hewage C, Malthouse JPG, Duetz W, O’Connor KE (2004) Biotransformation of halophenols using crude cell extracts of Pseudomonas putida F6. Appl Microbiol Biotechnol 64:486–492

    Article  PubMed  CAS  Google Scholar 

  • Brooks SJ, Doyle EM, O’Connor KE (2006) Tyrosol to hydroxytyrosol biotransformation by immobilized cell extracts of Pseudomonas putida F6. Enzym Microb Technol 39:191–196

    Article  CAS  Google Scholar 

  • Burton SG (2003) Oxidizing enzymes as biocatalysts. Trends Biotechnol 21:543–549

    Article  PubMed  CAS  Google Scholar 

  • Coulombel L, Nolan LC, Nikodinovic J, Doyle EM, O’Connor KE (2011) Biotransformation of 4-halophenols to 4-halocatechols using Escherichia coli expressing 4-hydroxyphenylacetate 3-hydroxylase. Appl Microbiol Biotechnol 89:1867–1875

    Article  PubMed  CAS  Google Scholar 

  • Espin JC, Varon R, Fenoll LG, Gilabert MA, Garcia-Ruiz PA, Tudela J, Garcia-Canovas F (2000) Kinetic characterization of the substrate specificity and mechanism of mushroom tyrosinase. Eur J Biochem 267:1270–1279

    Article  PubMed  CAS  Google Scholar 

  • Espín JC, Soler-Rivas C, Cantos E, Tomas-Barbera FA, Wichers HJ (2001) Synthesis of the antioxidant hydroxytyrosol using tyrosinase as biocatalyst. J Agric Food Chem 49:1187–1193

    Article  PubMed  CAS  Google Scholar 

  • Fairhead M, Thony-Meyer L (2012) Bacterial tyrosinases: old enzymes with new relevance to biotechnology. New Biotechnol 29:183–191

    Article  CAS  Google Scholar 

  • Fiege H, Voges HW, Hamamoto T, Umemura S, Iwata T, Miki H, Fujita Y, Buysch HJ, Garbe D, Paulus W (2002) Phenol derivatives in Ullmann’s encyclopedia of industrial chemistry Wiley-VCH, Weinheim

  • García-Borron JC, Solano F (2002) Molecular anatomy of tyrosinase and its related proteins: beyond the histidine bound metal catalytic center. Pigment Cell Res 15:162–173

    Article  PubMed  Google Scholar 

  • Golan-Goldhirsh A, Whitaker JR (1984) Effect of ascorbic acid, sodium bisulfite, and thiol compounds on mushroom polyphenol oxidase. J Agric Food Chem 32:1003–1009

    Article  CAS  Google Scholar 

  • Goldfeder M, Kanteev M, Adir N, Fishman A (2013) Influencing the monophenolase/diphenolase activity ratio in tyrosinase. Biochim Biophys Acta 1834:629–633

    Article  PubMed  CAS  Google Scholar 

  • Guazzaroni M, Crestini C, Saladino R (2012) Layer-by-Layer coated tyrosinase: an efficient and selective synthesis of catechols. Bioorg Med Chem 20:157–166

    Article  PubMed  CAS  Google Scholar 

  • Hansen TV, Skattebol L (2005) One-pot synthesis of substituted catechols from the corresponding phenols. Tetrahedron Lett 46:3357–3358

    Article  CAS  Google Scholar 

  • Heinrich MR, Steglich W, Banwell MG, Kashman Y (2003) Total synthesis of the marine alkaloid halitulin. Tetrahedron 59:9239–9247

    Article  CAS  Google Scholar 

  • Hernandez-Romero D, Sanchez-Amat A, Solano F (2005) Polyphenol oxidase activity expression in Ralstonia solanacearum. Appl Environ Microbiol 71:6808–6815

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hernandez-Romero D, Sanchez-Amat A, Solano F (2006) A tyrosinase with an abnormally high tyrosine hydroxylase/dopa oxidase ratio—role of the seventh histidine and accessibility to the active site. FEBS J 273:257–270

    Article  PubMed  CAS  Google Scholar 

  • Hille UE, Hu Q, Vock C, Negri M, Bartels M, Mueller-Vieira U, Lauterbach T, Hartmann RW (2009) Novel CYP17 inhibitors: synthesis, biological evaluation, structure-activity relationships and modeling of methoxy- and hydroxy-substituted methylene-imidazolyl biphenyls. Eur J Med Chem 44:2765–2775

    Article  PubMed  CAS  Google Scholar 

  • Ho PY, Chiou MS, Chao AC (2003) Production of L-DOPA by tyrosinase immobilized on modified polystyrene. Appl Biochem Biotechnol 111:139–152

    Article  PubMed  CAS  Google Scholar 

  • Kampmann M, Riedel N, Mo YL, Beckers L, Wichmann R (2016) Tyrosinase catalyzed production of 3,4-dihydroxyphenylacetic acid using immobilized mushroom (Agaricus bisporus) cells and in situ adsorption. J Mol Catal B Enzym 123:113–121

    Article  CAS  Google Scholar 

  • Kirk KL, Creveling CR (1984) The chemistry and biology of ring-fluorinated biogenic amines. Med Res Rev 4:189–220

    Article  PubMed  CAS  Google Scholar 

  • Krueger RC (1950) The effect of ascorbic acid on the enzymatic oxidation of monohydric and o-dihydric phenols. J Am Chem Soc 72:5582–5587

    Article  CAS  Google Scholar 

  • Liu N, Zhang T, Wang YJ, Huang YP, Ou JH, Shen P (2004) A heat inducible tyrosinase with distinct properties from Bacillus thuringiensis. Lett Appl Microbiol 3:407–412

    Article  CAS  Google Scholar 

  • Marino SM, Fogal S, Bisaglia M, Moro S, Scartabelli G, De Gioia L, Spada A, Monzani E, Casella L, Mammi S, Bubacco L (2011) Investigation of Streptomyces antibioticus tyrosinase reactivity toward chlorophenols. Arch Biochem Biophys 505:67–74

    Article  PubMed  CAS  Google Scholar 

  • Marín-Zamora ME, Rojas-Melgarejoa F, García-Cánovas F, García-Ruiza PA (2009) Production of o-diphenols by immobilized mushroom tyrosinase. J Biotechnol 139:163–168

    Article  PubMed  CAS  Google Scholar 

  • Martin LB, Nikodinovic J, Mc Mahon AM, Vijgenboom E, O’Connor KE (2008) Assessing the catalytic activity of three different sources of tyrosinase: a study of the oxidation of mono- and difluorinated monophenols. Enzym Microb Technol 43:297–301

    Article  CAS  Google Scholar 

  • Michalik J, Emilianowicz-Czerska W, Switalski L, Raczyńska-Bojanowska K (1975) Monophenol monooxygenase and lincomysin biosynthesis in Streptomyces lincolnensis. Antimicrob Agents Chemother 8:526–531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Molloy S, Nikodinovic-Runic J, Martin LB, Hartmann H, Solano F, Decker H, O’Connor KE (2013) Engineering of a bacterial tyrosinase for improved catalytic efficiency towards D-tyrosine using random and site directed mutagenesis approaches. Biotechnol Bioeng 110:1849–1857

    Article  PubMed  CAS  Google Scholar 

  • Munoz-Munoz JL, Garcia-Molina F, Garcia-Ruiz P, Molina-Alarcon M, Tudela J, Garcia-Canovas F, Rodriguez-Lopez JN (2008) Phenolic substrates and suicide inactivation of tyrosinase: kinetics and mechanism. Biochem J 416:431–440

    Article  PubMed  CAS  Google Scholar 

  • Paulini R, Lerner C, Diederich F, Jakob-Roetne R, Zürcher G, Borroni E (2006) Synthesis and biological evaluation of potent bisubstrate inhibitors of the enzyme catechol O-methyltransferase (COMT) lacking a nitro group. Helv Chim Acta 89:1856–1887

    Article  CAS  Google Scholar 

  • Pialis P, Saville BA (1998) Production of L-DOPA from tyrosinase immobilized on nylon 66: enzyme stability and scale up. Enzym Microb Technol 22:261–268

    Article  CAS  Google Scholar 

  • Qu Y, Shi S, Ma Q, Kong C, Zhou H, Zhang X, Zhou J (2013) Multistep conversion of para-substituted phenols by phenol hydroxylase and 2,3-dihydroxybiphenyl 1,2-dioxygenase. Appl Biochem Biotechnol 169:2064–2075

    Article  PubMed  CAS  Google Scholar 

  • Ros JR, Rodriguez-Lopez JN, Garcia-canovas F (1993) Effect of L-ascorbic acid on the monophenolase activity of tyrosinase. Biochem J 295:309–312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanchez-Ferrer A, Rodriguez-Lopez JN, Garcia-Canovas F, Garcia-Carmona F (1995) Tyrosinase: a comprehensive review of its mechanism. Biochim Biophys Acta 1247:1–11

    Article  PubMed  Google Scholar 

  • Seetharam G, Saville BA (2002) L-DOPA production from tyrosinase immobilized on zeolite. Enzym Microb Technol 31:747–753

    Article  CAS  Google Scholar 

  • Seo SY, Sharma VK, Sharma N (2003) Mushroom tyrosinase: recent prospects. J Agric Food Chem 51:2837–2853

    Article  PubMed  CAS  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  PubMed  CAS  Google Scholar 

  • Subrizi F, Crucianelli M, Grossi V, Passacantando M, Pesci L, Saladino R (2014) Carbon nanotubes as activating tyrosinase supports for the selective synthesis of catechols. ACS Catal 4:810–822

    Article  CAS  Google Scholar 

  • Surwase SN, Jadhav JP (2011) Bioconversion of L-tyrosine to L-DOPA by a novel bacterium Bacillus sp. JPJ. Amino Acids 41:495–506

    Article  PubMed  CAS  Google Scholar 

  • Yabuki C, Yagi K, Nanjo F (2017) Highly efficient synthesis of theaflavins by tyrosinase from mushroom and its application to theaflavin related compounds. Process Biochem 55:61–69

    Article  CAS  Google Scholar 

  • Yamaguchi S, Tsuchida N, Miyazawa M, Hirai Y (2005) Synthesis of two naturally occurring 3-methyl-2, 5-dihydro-1-benzoxepin carboxylic acids. J Organomet Chem 70:7505–7511

    Article  CAS  Google Scholar 

  • Xu DY, Chen JY, Yang Z (2012) Use of cross linked tyrosinase aggregates as catalyst for synthesis of L-DOPA. Biochem Eng J 63:88–94.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin E. O’Connor.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, R., Molloy, S., Quigley, B. et al. Biocatalytic versatility of engineered and wild-type tyrosinase from R. solanacearum for the synthesis of 4-halocatechols. Appl Microbiol Biotechnol 102, 5121–5131 (2018). https://doi.org/10.1007/s00253-018-8994-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-8994-5

Keywords

Navigation